精英家教网 > 初中数学 > 题目详情
7.通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟.设通讯员到达某地的路程是x千米,原定的时间为y小时,则可列方程组为(  )
A.$\left\{\begin{array}{l}{\frac{x}{15}-15=y}\\{\frac{x}{12}+12=y}\end{array}\right.$B.$\left\{\begin{array}{l}{\frac{x}{15}+15=y}\\{\frac{x}{12}-12=y}\end{array}\right.$
C.$\left\{\begin{array}{l}{\frac{x}{15}-\frac{24}{60}=y}\\{\frac{x}{12}-\frac{15}{60}=y}\end{array}\right.$D.$\left\{\begin{array}{l}{\frac{x}{15}+\frac{24}{60}=y}\\{\frac{x}{12}-\frac{15}{60}=y}\end{array}\right.$

分析 设通讯员到达某地的路程是x千米,原定的时间为y小时,根据通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟列出方程组.

解答 解:设通讯员到达某地的路程是x千米,原定的时间为y小时,由题意得:
$\left\{\begin{array}{l}{\frac{x}{15}+\frac{24}{60}=y}\\{\frac{x}{12}-\frac{15}{60}=y}\end{array}\right.$,
故选D.

点评 此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.化简求值:($\frac{4x+2}{{x}^{2}-1}$-$\frac{2}{x+1}$)÷$\frac{x+2}{{x}^{2}-2x+1}$,其中x=$\sqrt{2}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,已知函数y=kx 与函数y=$\frac{k}{x}$的图象交于A、B 两点,过点B作BC⊥y 轴,垂足为C,连接AC.若△ABC 的面积为2,则k 的值为2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,在半径为1的⊙O中,∠BAC=30°,点D是劣弧CB的中点,点P是直径AB上的一个动点,则CP+DP的最小值为(  )
A.$\sqrt{2}$B.$\frac{{2\sqrt{2}}}{3}$C.$\sqrt{3}$D.$\sqrt{2}-1$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知:如图,△ABC中,∠ACB=90°,D为AB边中点,点F在BC边上,DE∥CF,且DE=CF.若DF=2,EB的长为2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.在平面直角坐标系中,定义点P(x1,y1)、Q(x2,y2)之间的“直角距离”为:d(P,Q)=|x1-x2|+|y1-y2|
(1)若P(1,-2)、Q(2,3),则d(P,Q)=6.
(2)若C(x,y)到点A(1,3)、B(6,9)的“直角距离”相等,其中实数x、y满足0≤x≤10、0≤y≤10,求所有满足条件的点C的轨迹的长度之和为5(1+$\sqrt{2}$).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,点E,F,G,H分别是任意四边形ABCD中AD,BD,CA,BC的中点.若四边形EFCH是菱形,则四边形ABCD的边需满足的条件是(  )
A.AB∥DCB.AC=BDC.AC⊥BDD.AB=DC

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,在四边形ABCD中,已知AB∥DC,AB=DC,在不添加任何辅助线的情况下,请补充一个条件,使四边形ABCD成为矩形,这个条件是∠A=90°.

查看答案和解析>>

同步练习册答案