精英家教网 > 初中数学 > 题目详情
18.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是(  )
A.$\sqrt{3}$cm2B.$\frac{3}{2}$$\sqrt{3}$cm2C.$\frac{9}{2}$$\sqrt{3}$cm2D.$\frac{27}{2}$$\sqrt{3}$cm2

分析 如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD=$\sqrt{3}$x,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.

解答 解:∵△ABC为等边三角形,
∴∠A=∠B=∠C=60°,AB=BC=AC.
∵筝形ADOK≌筝形BEPF≌筝形AGQH,
∴AD=BE=BF=CG=CH=AK.
∵折叠后是一个三棱柱,
∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.
∴∠ADO=∠AKO=90°.
连结AO,
在Rt△AOD和Rt△AOK中,
$\left\{\begin{array}{l}{AO=AO}\\{OD=OK}\end{array}\right.$,
∴Rt△AOD≌Rt△AOK(HL).
∴∠OAD=∠OAK=30°.
设OD=x,则AO=2x,由勾股定理就可以求出AD=$\sqrt{3}$x,
∴DE=6-2$\sqrt{3}$x,
∴纸盒侧面积=3x(6-2$\sqrt{3}$x)=-6$\sqrt{3}$x2+18x,
=-6$\sqrt{3}$(x-$\frac{\sqrt{3}}{2}$)2+$\frac{9\sqrt{3}}{2}$,
∴当x=$\frac{\sqrt{3}}{2}$时,纸盒侧面积最大为$\frac{9\sqrt{3}}{2}$.
故选C.

点评 本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.若x=-$\frac{1}{3}$,则|x|的值是(  )
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,点A在双曲线y=$\frac{2}{x}$上,点B在双曲线y=$\frac{6}{x}$上,且AB∥x轴,C、D在x轴上,若四边形ABCD为正方形,则AB=2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,在△ABC和△ADE中,∠B=∠D=90°,AB=AD,要使△ABC≌△ADE,应添加条件∠C=∠E.(添加一个条件即可)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.小张从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,则下列说法中正确的个数是(  )
①小张家距离单位4千米;
②小张上班所用的时间为12分钟;
③小张上坡的速度是0.5千米/小时;
④小张下班所用时间为15分钟.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图①,②,③,用一种大小相等的正多边形密铺成一个“环”,我们称之为环形密铺.但图④,⑤不是我们所说的环形密铺.请你再写出一种可以进行环形密铺的正多边形:正十二边形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,在Rt△ABC中,∠ABC=90°.AB=BC.点D是线段AB上的一点,连结CD.过点B作BG⊥CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连结DF,给出以下四个结论:①$\frac{AG}{AB}$=$\frac{AF}{FC}$;②若点D是AB的中点,则AF=$\frac{\sqrt{2}}{3}$AB;③当B、C、F、D四点在同一个圆上时,DF=DB;④若$\frac{DB}{AD}$=$\frac{1}{2}$,则S△ABC=9S△BDF,其中正确的结论序号是(  )
A.①②B.③④C.①②③D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列说法正确的是(  )
A.对角线相等且相互垂直的四边形是菱形
B.四条边相等的四边形是正方形
C.对角线相互垂直的四边形是平行四边形
D.对角线相等且相互平分的四边形是矩形

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,某飞机在空中A处探测到它的正下方地平面上目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角α=30°,则飞机A与指挥台B的距离为(  )
A.1200mB.1200$\sqrt{2}$mC.1200$\sqrt{3}$mD.2400m

查看答案和解析>>

同步练习册答案