精英家教网 > 初中数学 > 题目详情
如图,AB为⊙O的直径,劣
BC
=
BE
弧BDCE,连接AE并延长交BD于D.
求证:
(1)BD是⊙O的切线;
(2)AB2=AC•AD.
证明:(1)∵
CB
=
BE

∴∠1=∠2,
AC
=
AE
,AC=AE.
∴AB⊥CE.
∵CEBD,∴AB⊥BD.
∴BD是⊙O的切线.

(2)连接CB.
∵AB是⊙O的直径,∴∠ACB=90°.
∵∠ABD=90°,∴∠ACB=∠ABD.
∵∠1=∠2,∴△ACB△ABD.
AC
AB
=
AB
AD

∴AB2=AD•AC.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,PA是⊙O的切线,切点为A,∠APO=36°,则∠AOP的度数为______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,经过圆上点D的直线CD恰使∠ADC=∠B.
(1)求证:直线CD是⊙O的切线;
(2)过点A作直线AB的垂线交BD的延长线于点E.且AB=
5
,BD=2.求线段AE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一机械零件的横截面如图所示,作⊙O1的弦AB与⊙O2相切,且ABO1O2,如果AB=10cm,则下列说法正确的是(  )
A.阴影面积为100πcm2
B.阴影面积为50πcm2
C.阴影面积为25πcm2
D.因缺少数据阴影面积无法计算

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,A、B为⊙O上两点,下列寻找弧AB的中点C的方法中正确的有(  )
作法一:连接OA、OB,作∠AOB的角平分线交弧AB于点C;
作法二:连接AB,作OH⊥AB于H,交弧AB于点C;
作法三:在优弧AmB上取一点D,作∠ADB的平分线交弧AB于点C;
作法四:分别过A、B作⊙O的切线,两切线交于点P,连接OP交弧AB于C.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过AC的中点M.
(Ⅰ)求证:MO=
1
2
BC;
(Ⅱ)求证:PC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,边长为1的正方形ABCD中,以A为圆心,1为半径作
BD
,将一块直角三角板的直角顶点P放置在
BD
(不包括端点B、D)上滑动,一条直角边通过顶点A,另一条直角边与边BC相交于点Q,连接PC,并设PQ=x,以下我们对△CPQ进行研究.
(1)△CPQ能否为等边三角形?若能,则求出x的值;若不能,则说明理由;
(2)求△CPQ周长的最小值;
(3)当△CPQ分别为锐角三角形、直角三角形和钝角三角形时分别求x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,⊙O的割线PAB交于⊙O于点A、B,PA=4cm,AB=5cm,PO=7.5cm,则⊙O的直径长为______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,以△ABC的边AB为直径的⊙O经过BC的中点D,过D作DE⊥AC于E.
(1)求证:AB=AC;
(2)求证:DE是⊙O的切线.

查看答案和解析>>

同步练习册答案