精英家教网 > 初中数学 > 题目详情

如图,在四边形ABCD中,AB∥CD,点E、F分别在AD、BC边上,连接AC交EF于G,∠1=∠BAC.
(1)求证:EF∥CD;
(2)若∠CAF=15°,∠2=45°,∠3=20°,求∠B和∠ACD的度数.

证明:(1)如右图,
∵∠1=∠BAC,
∴AB∥EF,
∵AB∥CD,
∴EF∥CD;

(2)∵EF∥CD,
∴∠B+∠BFE=180°,
∵∠BFE=∠2+∠3=65°,
∴∠B=115°,
∵∠1是△AGF的外角,
∴∠1=∠3+∠GAF=35°,
∵EF∥CD,
∴∠ACD=∠1=35°.
分析:(1)根据∠1=∠BAC,易得AB∥EF,而AB∥CD,根据平行公理的推论可得EF∥CD;
(2)由(1)知EF∥CD,那么∠B+∠BFE=180°,据图易求∠BFE,进而可求∠B,又由于∠1是△AGF的外角,可求∠1,而EF∥CD,那么有∠ACD=∠1=35°.
点评:本题考查了平行线的判定和性质、平行公理的推论、三角形外角性质,解题的关键是证明EF∥CD.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠BAC=90°,将△ABC沿线段BC向右平移得到△DEF,使CE=AE,连结AD、AE、CD,则下列结论:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四边形AECD为菱形,其中正确的共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源:浙江省同步题 题型:证明题

已知:如图,在四边形ABC中,AD=BC,AB=CD.求证:AB∥CD,AD∥BC.

查看答案和解析>>

同步练习册答案