精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为D,DE⊥AB,垂足为E,则图中与△ADE相似的三角形的个数为( )

A.1
B.2
C.3
D.4
【答案】分析:根据直角三角形的性质和相似三角形的判定定理两角法(有两组角对应相等的两个三角形相似)作出正确的选择.
解答:解:∵∠BAC=90°,AD⊥BC,DE⊥AB,
∴∠BAC=∠ADB=∠ADC=∠DEA=∠DEB=90°.
①在△ADE与△ABD中,∠AED=∠ADB=90°,∠A=∠A,则△AED∽△ADB;
②在△ADE与△DBE中,∠AED=∠DEB=90°,∠EAD=∠EDB(同角的余角相等),则△ADE∽△DBE;
③在△ADE与△CAD中,∠AED=∠CDA=90°,∠ADE=∠CAD(同角的余角相等),则△ADE∽△CAD;
④在△ADE与△CAB中,∠AED=∠CAB=90°,∠EAD=∠BCA(同角的余角相等),则△ADE∽△CAB.
综上所述,图中与△ADE相似的三角形的个数为4.
故选D.
点评:本题考查了相似三角形的判定.相似三角形的判定方法有:
(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;
(2)三边法:三组对应边的比相等的两个三角形相似;
(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;
(4)两角法:有两组角对应相等的两个三角形相似.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案