【题目】为了解九年级学生体育水平,学校对九年级全体学生进行了体育测试,并从甲、乙两班中各随机抽取名学生成绩(满分分)进行整理分析(成绩得分用表示,共分成四组:;,)下面给出了部分信息:
甲班名学生体育成绩:
乙班名学生体育成绩在组中的数据是:
甲、乙两班被抽取学生体育成绩统计表
平均数 | 中位数 | 众数 | 方差 | |
甲班 | ||||
乙班 |
根据以上信息,解答下列问题:
, , ;
根据以上数据,你认为 班(填“甲”或“乙”)体育水平更高,说明理由(两条理由):
;
.
学校九年级学生共人,估计全年级体育成绩优秀的学生人数是多少?
【答案】(1);(2)甲,详见解析;(3)估计全年级体育成绩优秀的学生约有人
【解析】
(1)根据C组的人数求得C组所占百分比,从而计算D组所占百分比求a,根据中位数和众数的概念求出c、d;
(2)根据平均数和中位数的性质解答;
(3)用样本估计总体,计算得答案.
解:(1)C组所占百分比:×100%=30%,
1-10%-20%-30%=40%,
∴a=40,
∵乙组20名学生的体育成绩的中位数是从小到大排序后,第10个和第11个数据的平均数,这两个数在C组,
∴b=,
∵在甲组20名学生的体育成绩中48出现的次数最多,
∴c=48;
(2)甲,理由如下:
①甲班平均分43.8大于乙班平均分42.5,甲班平均水平更高,
②甲班中位数45.5大于乙班中位数42.5,甲班中间水平更高;(答案不唯一,合理即可)
(3)20×40%=8(人),(人),
答:估计全年级体育成绩优秀的学生约有570人.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,抛物线L1:过点C(0,﹣3),与抛物线L2:的一个交点为A,且点A的横坐标为2,点P、Q分别是抛物线L1、抛物线L2上的动点.
(1)求抛物线L1对应的函数表达式;
(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点P的坐标;
(3)设点R为抛物线L1上另一个动点,且CA平分∠PCR,若OQ∥PR,求出点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“每天锻炼一小时,健康生活一辈子”,为了选拔“阳光大课堂”领操员校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:
成绩/分 | 7 | 8 | 9 | 10 |
人数/人 | 2 | 5 | 4 | 4 |
若任意选择一名领操员的可能性相同
(1)任意选取一名领操员,选到成绩最低领操员的概率是_________.
(2)已知获得10分的选手中,七、八、九年级分别有1人,2人,1人,学校准备从中随机选取两人领操,求恰好选到八年级两名领操员的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解班级学生数学课前预习的具体情况,郑老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)C类女生有 名,D类男生有 名,将上面条形统计图补充完整;
(2)扇形统计图中“课前预习不达标”对应的圆心角度数是 ;
(3)为了共同进步,郑老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,面积为的矩形在第二象限,与轴平行,反比例函数经过两点,直线所在直线与轴、轴交于两点,且为线段的三等分点,则的值为( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点为图形上任意一点,过点作直线垂足为,记的长度为.
定义一:若存在最大值,则称其为“图形到直线的限距离”,记作;
定义二:若存在最小值,则称其为“图形到直线的基距离”,记作;
(1)已知直线,平面内反比例函数在第一象限内的图象记作则 .
(2)已知直线,点,点是轴上一个动点,的半径为,点在上,若求此时的取值范围,
(3)已知直线恒过定点,点恒在直线上,点是平面上一动点,记以点为顶点,原点为对角线交点的正方形为图形,若请直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数的部分图象如图所示,其中图象与轴交于点,与轴交于点,且经过点.
求此二次函数的解析式;
将此二次函数的解析式写成的形式,并直接写出顶点坐标以及它与轴的另一个交点的坐标.
利用以上信息解答下列问题:若关于的一元二次方程(为实数)在的范围内有解,则的取值范围是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与轴交于两点(点在点的左侧),经过点的直线与轴交于点与抛物线的另一个交点为,且.
(1)直接写出点的坐标,并求直线的函数表达式(其中用含的式子表示);
(2)点是直线上方的抛物线上的动点,若的面积的最大值为,求的值;
(3)设是抛物线对称轴上的一点,点在抛物线上,以点为顶点的四边形能否成为矩形?若能,求出点的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中, , °,点D是线段BC上的动点,将线段AD绕点A顺时针旋转50°至,连接.已知AB2cm,设BD为x cm,B为y cm.
小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整.(说明:解答中所填数值均保留一位小数)
(1)通过取点、画图、测量,得到了与的几组值,如下表:
0.5 | 0.7 | 1.0 | 1.5 | 2.0 | 2.3 | ||
1.7 | 1.3 | 1.1 | 0.7 | 0.9 | 1.1 |
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:
线段的长度的最小值约为__________ ;
若 ,则的长度x的取值范围是_____________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com