精英家教网 > 初中数学 > 题目详情
将10cm长的线段分成两部分,一部分作为正方形的一边,另一部分作为一个等腰直角三角形的斜边,求这个正方形和等腰直角三角形面积之和的最小值为   
【答案】分析:设等腰直角三角形的斜边为x,则正方形的边长为10-x.分别用含x的式子表示两个图形的面积,再求和的表达式,运用函数性质求解.
解答:解:设等腰直角三角形的斜边为xcm,则正方形的边长为(10-x)cm.若等腰直角三角形的面积为S1,正方形面积为S2,则
S1=•x•x=x2,S2=(10-x)2
面积之和S=x2+(10-x)2=x2-20x+100.
>0,
∴函数有最小值.
即S最小值==20(cm2).
故答案为20平方厘米.
点评:此题的关键在数学建模思想的应用.选择合适的未知量表示面积得到函数关系式,再运用函数性质求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

将10cm长的线段分成两部分,一部分作为正方形的一边,另一部分作为一个等腰直角三角形的斜边,求这个正方形和等腰直角三角形面积之和的最小值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

将10cm长的线段分成两部分,一部分作为正方形的一边,另一部分作为一个等腰直角三角形的斜边,求这个正方形和等腰直角三角形面积之和的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将10cm长的线段分成两部分,一部分作为正方形的一边,另一部分作为一个等腰直角三角形的斜边,求这个正方形和等腰直角三角形面积之和的最小值为______.

查看答案和解析>>

科目:初中数学 来源:2008-2009学年九年级第一学期数学一至三章阶段性测试(解析版) 题型:解答题

将10cm长的线段分成两部分,一部分作为正方形的一边,另一部分作为一个等腰直角三角形的斜边,求这个正方形和等腰直角三角形面积之和的最小值.

查看答案和解析>>

同步练习册答案