精英家教网 > 初中数学 > 题目详情
12.正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为(3,2).

分析 根据直线解析式先求出OA1=1,求得第一个正方形的边长,再求出第二个正方形的边长为2,即可求得B2的坐标.

解答 解:∵直线y=x+1,当x=0时,y=1,当y=0时,x=-1,
∴OA1=1,OD=1,
∴∠ODA1=45°,
∴∠A2A1B1=45°,
∴A2B1=A1B1=1,
∴A2C1=C1C2=2,
∴OC2=OC1+C1C2=1+2=3,
∴B2(3,2).
故答案为(3,2).

点评 本题考查了一次函数图象上点的坐标特征以及正方形的性质;求出第一个正方形、第二个正方形的边长是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.如图,方格纸中有三个格点A、B、C,则sin∠ABC=$\frac{9\sqrt{145}}{145}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图是某电信公司提供了A、B两种方案的移动通讯费用y(元)与通话时间x(分)之间的关系,则下列结论中正确的共有(  )
(1)若通话时间少于120分,则A方案比B方案便宜
(2)若通话时间超过200分,则B方案比A方案便宜
(3)若通讯费用为60元,则B方案比A方案的通话时间多
(4)当通话时间为170分钟时,A方案与B方案的费用相等.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,矩形ABCD中,AB=8,BC=16,E为CD的中点,点P、Q为BC上两个动点,
①若连结AP、PE,则PE+AP最小值为20;
②连结PA、QE,若PQ=6,当CQ=$\frac{10}{3}$时,四边形APQE的周长最小.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点 P1、P2、P3,把△ABC分成7个互不重叠的小三角形;…△ABC的三个顶点和它内部的点 P1、P2、P3、…、Pn,把△ABC分成2n+1个互不重叠的小三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
【发现证明】
小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
【类比引申】
如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足∠BAD=2∠EAF关系时,仍有EF=BE+FD.
【探究应用】
如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40($\sqrt{3}$-1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:$\sqrt{2}$=1.41,$\sqrt{3}$=1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,抛物线经过A(-2,0),B(-$\frac{1}{2}$,0),C(0,2)三点.
(1)求抛物线的解析式;
(2)在直线AC下方的抛物线上有一点D,使得△DCA的面积最大,求点D的坐标;
(3)设点M是抛物线的顶点,试判断抛物线上是否存在点H满足∠AMH=90°?若存在,请求出点H的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:|-2|+$\sqrt{9}$+2-1-cos60°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列计算正确的是(  )
A.(a52=a10B.x16÷x4=x4C.2a2+3a2=6a4D.b3•b3=2b3

查看答案和解析>>

同步练习册答案