精英家教网 > 初中数学 > 题目详情

如图,已知AB∥CD,∠BCD的三等分线是CP,CQ,又CR⊥CP,若∠B=78°,则∠RCE=


  1. A.
    66°
  2. B.
    65°
  3. C.
    58°
  4. D.
    56°
D
分析:根据两直线平行,同旁内角互补求出∠BCD的度数,再根据CP、CQ是∠BCD的三等分线即可求出∠BCP的度数,然后∠据CR⊥CP求出∠BCR,再根据两直线平行,内错角相等求出∠BCE的度数,两角相减即可求出∠RCE的度数.
解答:∵AB∥CD,∠B=78°,
∴∠BCD=180°-78°=102°,
∵∠BCD的三等分线是CP,CQ,
∴∠BCP=×∠BCD=×102°=68°,
∵CR⊥CP,
∴∠BCR=90°-∠BCP=90°-68°=22°,
∵AB∥CD,∠B=78°,
∴∠BCE=∠B=78°,
∴∠RCE=∠BCE-∠BCR=78°-22°=56°.
故选D.
点评:本题主要考查了两直线平行,同旁内角互补,内错角相等的性质以及角的计算,准确识图,并仔细分析从而求出∠BCR的度数是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知AB=CD且∠ABD=∠BDC,要证∠A=∠C,判定△ABD≌△CDB的方法是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,已知AB∥CD,∠A=38°,则∠1=
142°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB∥CD,∠1=50°25′,则∠2的大小是
129°35′
129°35′

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知 AB∥CD,∠A=53°,则∠1的度数是
127°
127°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB∥CD∥EF,那么下列结论中,正确的是(  )

查看答案和解析>>

同步练习册答案