精英家教网 > 初中数学 > 题目详情
(2002•徐州)已知,如图,∠CAB=∠DBA,AC=BD,AD交BC于点O.
求证:(1)△CAB≌△DBA;(2)OC=OD.

【答案】分析:(1)因为∠CAB=∠DBA,AC=BD,AB是公共边,所以可根据SAS判定△CAB≌△DBA;
(2)因为△CAB≌△DBA,则有∠C=∠D,又因为∠COA=∠DOB,AC=BD,根据ASA易证△COA≌△DOB,故OC=OD.
解答:证明:(1)∵AC=BD,∠CAB=∠DBA,AB=BA,
∴△CAB≌△DBA;

(2)∵△CAB≌△DBA,
∴∠C=∠D.
又∵∠COA=∠DOB,AC=BD,
∴△COA≌△DOB.
∴OC=OD.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2002•徐州)已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.

查看答案和解析>>

科目:初中数学 来源:2011年江苏省常州市中考数学试卷 题型:解答题

(2002•徐州)已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2002•徐州)已知二次函数y=x2-(2m+1)x+m2的图象与x轴交于点A(xl,0)、B(x2,0),其中xl<x2,且+=
(1)求二次函数的解析式;
(2)若一次函数y=x+n的图象过点B,求其解析式;
(3)在给出的坐标系中画出所求出的一次函数和二次函数的图象;
(4)对任意实数a、b,若a≥b,记max{a,b}=a,例如:max{1,2}=2,max{3,3}=3,请你观察第(3)题中的两个图象,如果对于任意一个实数x,它对应的一次函数的值为y1,对应的二次函数的值为y2,求出max{y1,y2}中的最小值及取得最小值时x的值.

查看答案和解析>>

科目:初中数学 来源:2002年江苏省徐州市中考数学试卷(解析版) 题型:解答题

(2002•徐州)已知二次函数y=x2-(2m+1)x+m2的图象与x轴交于点A(xl,0)、B(x2,0),其中xl<x2,且+=
(1)求二次函数的解析式;
(2)若一次函数y=x+n的图象过点B,求其解析式;
(3)在给出的坐标系中画出所求出的一次函数和二次函数的图象;
(4)对任意实数a、b,若a≥b,记max{a,b}=a,例如:max{1,2}=2,max{3,3}=3,请你观察第(3)题中的两个图象,如果对于任意一个实数x,它对应的一次函数的值为y1,对应的二次函数的值为y2,求出max{y1,y2}中的最小值及取得最小值时x的值.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《三角形》(06)(解析版) 题型:解答题

(2002•徐州)已知,如图,∠CAB=∠DBA,AC=BD,AD交BC于点O.
求证:(1)△CAB≌△DBA;(2)OC=OD.

查看答案和解析>>

同步练习册答案