精英家教网 > 初中数学 > 题目详情
我们规定:形如 的函数叫做“奇特函数”.当时,“奇特函数”就是反比例函数.
(1) 若矩形的两边长分别是2和3,当这两边长分别增加x和y后,得到的新矩形的面积为8 ,求y与x之间的函数关系式,并判断这个函数是否为“奇特函数”;
(2) 如图,在平面直角坐标系中,点O为原点,矩形OABC的顶点A,C的坐标分别为(9,0)、(0,3).点D是OA的中点,连结OB,CD交于点E,“奇特函数”的图象经过B,E两点.
① 求这个“奇特函数”的解析式;
② 把反比例函数的图象向右平移6个单位,再向上平移    个单位就可得到①中所得“奇特函数”的图象.过线段BE中点M的一条直线l与这个“奇特函数”的图象交于P,Q两点,若以B、E、P、Q为顶点组成的四边形面积为,请直接写出点P的坐标.
(1),是 “奇特函数”;(2)①;②.

试题分析:(1)根据题意列式并化为,根据定义作出判断.
(2)①求出点B,D的坐标,应用待定系数法求出直线OB解析式和直线CD解析式,二者联立即可得点E 的坐标,将B(9,3),E(3,1)代入函数即可求得这个“奇特函数”的解析式.
②根据题意可知,以B、E、P、Q为顶点组成的四边形是平行四边形BPEQ或BQEP,据此求出点P的坐标.
试题解析:(1)根据题意,得
,∴.∴.
根据定义,是 “奇特函数”.
(2)①由题意得,.
易得直线OB解析式为,直线CD解析式为
解得.∴点E(3,1).
将B(9,3),E(3,1)代入函数,得,整理得,解得.
∴这个“奇特函数”的解析式为.
②∵可化为
∴根据平移的性质,把反比例函数的图象向右平移6个单位,再向上平移2个单位就可得到.
关于点(6,2)对称.
∵B(9,3),E(3,1),∴BE中点M(6,2),即点M是的对称中心.
∴以B、E、P、Q为顶点组成的四边形是平行四边形BPEQ或BQEP.
由勾股定理得,.
设点P到EB的距离为m,
∵以B、E、P、Q为顶点组成的四边形面积为
.
∴点P在平行于EB的直线上.
∵点P在上,
.
解得.
∴点P的坐标为.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知?ABCD水平放置在平面直角坐标系xOy中,若点A,D的坐标分别为(-2,5),(0,1),点B(3,5)在反比例函数y=(x>0)图象上.
(1)求反比例函数y=的解析式;
(2)将?ABCD沿x轴正方向平移10个单位后,能否使点C落在反比例函数y=的图象上?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

对于平面直角坐标系xOy中的点P(a,b),若点的坐标为()(其中k为常数,且),则称点为点P的“k属派生点”.
例如:P(1,4)的“2属派生点”为(1+),即(3,6).
(1)①点P的“2属派生点” 的坐标为____________; 
②若点P的“k属派生点” 的坐标为(3,3),请写出一个符合条件的点P的坐标____________;
(2)若点P在x轴的正半轴上,点P的“k属派生点”为点,且△为等腰直角三角形,则k的值为____________;
(3)如图, 点Q的坐标为(0,),点A在函数的图象上,且点A是点B的“属派生点”,当线段B Q最短时,求B点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为(   )
A.1        B.2          C.3           D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,制作某种食品的同时需将原材料加热,设该材料温度为y ℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系.已知该材料在加热前的温度为4℃,加热一段时间使材料温度达到28℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系,已知当第12分钟时, 材料温度是14℃.
(1)分别求出该材料加热和停止加热过程中y与x的函数关系式(写出x的取值范围);
(2)根据该食品制作要求,在材料温度不低于12℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理的时间为多少分钟?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图是一个数值转换机,当输入5时,输出的结果是(  )
A.1B.2C.5D.6

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1和2,在△ABC中,AB=13,BC=14,cos∠ABC=
探究:如图1,AH⊥BC于点H,则AH=       ,AC=    ,△ABC的面积SABC=      
拓展:如图2,点D在AC上(可与点A,C重合),分别过点A、C作直线BD的垂线,垂足为E,F,设BD=x,AE=m,CF=n(当点D与点A重合时,我们认为SABD=0)
(1)用含x,m,n的代数式表示SABD及SCBD
(2)求(m+n)与x的函数关系式,并求(m+n)的最大值和最小值;
(3)对给定的一个x值,有时只能确定唯一的点D,指出这样的x的取值范围.
发现:请你确定一条直线,使得A、B、C三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知A点是反比例函数的图象上一点,AB⊥y轴于B,且△ABO的面积为3,则k的值为        

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如下图,双曲线y= (k>0)与⊙O在第一象限内交于P、Q 两点,分别过P、Q两点向x轴和y轴作垂线,已知点P坐标为(1,3),则图中阴影部分的面积为________.

查看答案和解析>>

同步练习册答案