精英家教网 > 初中数学 > 题目详情
18.如图,AB是⊙O的直径,C是$\widehat{BD}$的中点,CE⊥AB于点E,BD交CE于点F.
(1)求证:CF=BF;
(2)若CD=6,AC=8,求⊙O的半径及CE的长.

分析 (1)要证明CF﹦BF,可以证明∠1=∠2;AB是⊙O的直径,则∠ACB﹦90°,又知CE⊥AB,则∠CEB﹦90°,则∠2﹦90°-∠ACE﹦∠A,∠1﹦∠A,则∠1=∠2;
(2)在直角三角形ACB中,AB2=AC2+BC2,又知,BC=CD,所以可以求得AB的长,即可求得圆的半径;再根据三角形相似可以求得CE的长.

解答 (1)证明:∵AB是⊙O的直径,
∴∠ACB=90°,∴∠A=90°-∠ABC.
∵CE⊥AB,∴∠CEB=90°,
∴∠ECB=90°-∠ABC,∴∠ECB=∠A.(2分)
又∵C是$\widehat{BD}$的中点,
∴$\widehat{CD}$=$\widehat{CB}$,
∴∠DBC=∠A,
∴∠ECB=∠DBC,
∴CF=BF;

(2)解:∵$\widehat{BC}$=$\widehat{CD}$,
∴BC=CD=6,
∵∠ACB=90°,
∴AB=$\sqrt{BC2+AC2}$=$\sqrt{62+82}$=10,
∴⊙O的半径为5,
∵S△ABC=$\frac{1}{2}$AB•CE=$\frac{1}{2}$BC•AC,
∴CE=$\frac{BC•AC}{AB}$=$\frac{6×8}{10}$=$\frac{24}{5}$.

点评 此题考查了相似三角形的判定与性质、全等三角形的判定与性质、圆周角定理、等腰三角形的性质以及角平分线的性质等知识.此题综合性很强,难度适中,注意数形结合思想与方程思想的应用,注意辅助线的作法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.请你任意写出一个在y轴上的点的坐标(0,1).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.已知x2-2x=3,则式子2x2-4x+3的值为9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,△ABC在平面直角坐标系中,点A、B、C的坐标分别为A(-2,1),B(-4,5),C(-5,2).
(1)画出△ABC关于y对称的△A1B1C1,其中,点A、B、C的对应点分别为A1、B1、C1;     
(2)直接写出点A1、B1、C1的坐标;  A1(4,5),B1(4,5),C1(5,2)
(3)△A1B1C1的面积是5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,过△ABC的顶点A分别作对边BC上的高线AD和中线AE,交BC于点D,E,规定λA=$\frac{DE}{BE}$,当点D与点E重合时,规定λA=0,另外对λB,λC作类似的规定.

(1)如图2,已知在Rt△ABC中,∠A=30°,求 λA,λC
(2)判断下列三个命题的真假(真命题打“√”,假命题打“×”):
①若△ABC中λA<1,则△ABC为锐角三角形;×
②若△ABC中λA=1,则△ABC为直角三角形;√
③若△ABC中λA>1,则△ABC为钝角三角形.√.
(2)如图3,在每个小正方形边长都为1的4×4的方格纸上,画一个△ABC,使其顶点在格点(即每个小正方形的顶点)上,且λA=2,面积也为2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,已知AB=AC,AD=AE,∠1=∠2,试说明BD=CE的理由.
解:∵∠1=∠2(已知)
∴∠1+∠BAE=∠2+∠BAE
即:∠BAD=∠CAE
在△BAD和△CAE中
AB=AC(已知)
∠BAD=∠CAE
AD=AE(已知)
∴△BAD≌△CAE(SAS)
∴BD=CE(全等三角形的对应边相等)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.$\sqrt{81}$的平方根是(  )
A.3B.-3C.±3D.±9

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图1,在平面直角坐标系中,点O为坐标原点,点A(5,5)为第一象限内一点,点B在x轴正半轴上,且∠AOB=45°,OA=OB.
(1)求点B的坐标;
(2)动点P以每秒2个单位长度的速度,从点O出发,沿x轴正半轴匀速运动,设点P的运动时间为t秒,△ABP的面积为S,请用含有t的式子表示S(S≠0),并直接写出t的取值范围;
(3)如图2,在(2)的条件下,点D坐标为(2,0),连接AD,AK⊥AD,过点B作x轴的垂线交AK于点K,过点A作x轴的平行线a,在点P的运动过程中,直线a上是否存在一点R,使△PKR是以PR为腰的等腰直角三角形?若存在,求出点R坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.先化简,再求值:$\frac{1}{{x}^{2}-x}$-$\frac{x-2}{{x}^{2}-2x+1}$÷$\frac{x-2}{x-1}$,其中x=-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案