精英家教网 > 初中数学 > 题目详情

【题目】如图,的内接三角形,的直径,相交于点的切线,交的延长线于.

1)求证:

2)如图,若,求证:

3)如图,在(2)的条件下,过点于点的延长线交于点,点的中点,若,求的长.

【答案】(1)见解析;(2)见解析;(3)

【解析】

1)连接,根据直径所对的圆周角是直角得到,即.根据切线的性质有,则.,根据等角的余角相等即可证明.

2)连接.根据,得到.

根据等边对等角得到,即,即可证明.

3)过点,过点,连接.根据,得到,则.,则. ,则,根据勾股定理,得.,则,即可求出,又.易求,即可求解.

1)连接,∵为直径,∴,∴.

为直径,为切线,∴,∴.

,∴.

2)连接.

,∴.

,∴,∴.

,∴,∴.

,∴

,∴.

3)过点,过点,连接.

,∴,∵,∴.

,∴

,∴.

,∴.

,则,根据勾股定理,得.

,∴,∴,∵.

易求,∴.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校九年级(2)班在测量校内旗杆高度的数学活动中,第一组的同学设计了两种测量方案,并根据测量结果填写了如下《数学活动报告》中的一部分.

课题

测量校内旗杆高度

目的

运用所学数学知识及数学方法解决实际问题﹣﹣﹣测量旗杆高度

方案

方案一

方案二

方案三

示意图

测量工具

皮尺、测角仪

皮尺、测角仪

测量数据

AM1.5mAB10m

α30°,∠β60°

AM1.5mAB20m

α30°,∠β60°

计算过程(

果保留根号)

解:

解:

(1)请你在方案一二中任选一种方案(多选不加分),根据方案提供的示意图及相关数据填写表中的计算过程、测量结果;

(2)请你根据所学的知识,再设计一种不同于方案一、二的测量方案三,并完成表格中方案三的所有栏目的填写.(要求:在示意图中标出所需的测量数据长度用字母abc…表示,角度用字母αβγ…表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若抛物线与x轴的两个交点及其顶点构成等边三角形,则称该抛物线“等边抛物线”.

(1)若对任意m,n,点M(m,n)和点N(-m+4,n)恒在“等边抛物线”上,求抛物线的解析式;

(2)若抛物线“等边抛物线”,求的值;

(3)对于“等边抛物线”,当1<x<m吋,总存在实数b。使二次函数的图象在一次函数y=x图象的下方,求m的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).

(1)请用列表的方法表示出上述游戏中两数和的所有可能的结果;

(2)分别求出李燕和刘凯获胜的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小鲁在一个不透明的盒子里装了5个除颜色外其他都相同的小球,其中有3个是红球,2个是绿球,每次拿一个球然后放回去,拿2次,则至少有一次取到绿球的概率是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:四边形ABCD是平行四边形,点O是对角线ACBD的交点,EF过点O且与ABCD分别相交于点EF,连接ECAF

1)求证:DF=EB;(2AF与图中哪条线段平行?请指出,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A在反比例函数y=(x>0)的图象上,作RtABC,边BCx轴上,点D为斜边AC的中点,连结DB并延长交y轴于点E,若BCE的面积为4,则k=______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各 300 株分别种植在甲、乙两个大棚. 对于市场最为关注的产量和产量的稳定性,进行了抽样调查,从甲、乙两个大棚各收集了 24 株秧苗上的小西红柿的个数,并对数据进行整理、描述和分析。

下面给出了部分信息:(说明:45 个以下为产量不合格,45 个及以上为产量合格,其中 4565 个为产量良好,6585 个为产量优秀)

a.补全下面乙组数据的频数分布直方图(数据分成 6 : 25≤x3535≤x4545≤x5555≤x6565≤x7575≤x85):

b.乙组数据在产量良好(45≤x65)这两组的具体数据为: 46 46 47 47 48 48 55 57 57 57 58 61

c.数据的平均数、众数和方差如下表所示:

大棚

平均数

中位数

众数

方差

52.25

51

58

238

52.25

57

210

1)补全乙的频数分布直方图.

2)写出表中的值.

3)根据样本情况,估计乙大棚产量良好及以上的秧苗数为 株.

4)根据抽样调查情况,可以推断出 大棚的小西红柿秧苗品种更适应市场需求,写出理由.(至少从两个不同的角度说明推断的合理性).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数k为常数,k≠1).

)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;

)若在其图象的每一支上,yx的增大而减小,求k的取值范围;

)若其图象的一支位于第二象限,在这一支上任取两点Ax1y1Bx2y2,当y1y2时,试比较x1x2的大小.

查看答案和解析>>

同步练习册答案