精英家教网 > 初中数学 > 题目详情
11、如图,将矩形纸片ABCD(图1)按如下步骤操作:
(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图2);
(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图3);
(3)将纸片收展平,那么∠AFE的度数为(  )
分析:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,可利用角度的关系求解.
解答:解:第一次折叠后,∠EAD=45°,∠AEC=135°;
第二次折叠后,∠AEF=67.5°,∠FAE=45°;
故由三角形内角和定理知,∠AFE=67.5度.
故选B.
点评:本题考查图形的折叠变化及三角形的内角和定理.
关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,将矩形纸片ABCD沿EF折叠,使点A与点C重合,点D落在点G处,EF为折痕.
(1)求证:△FGC≌△EBC;
(2)若AB=8,AD=4,求四边形ECGF(阴影部分)的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)动手操作:
如图①,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点c'处,折痕为EF,若∠ABE=20°,那么∠EFC'的度数为
 

(2)观察发现:
小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.
精英家教网
(3)实践与运用:
将矩形纸片ABCD 按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松北区三模)如图,将矩形纸片ABCD折痕,使点D落在点线段AB的中点F处.若AB=4,则边BC的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.
(1)求证:△AEC是等腰三角形;
(2)若P为线段AC上一动点,作PG⊥AB′于G、PH⊥DC于H,求证:PG+PH=AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

观察与发现:
(1)小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).你认为△AEF是什么形状的三角形?为什么?
精英家教网
实践与运用:
如图,将矩形纸片ABCD按如下顺序进行折叠:对折、展平,得折痕EF(如图①);沿GC折叠,使点B落在EF上的点B′处(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′、GH(如图⑥).
(2)在图②中连接BB′,判断△BCB′的形状,请说明理由;
(3)图⑥中的△GCC′是等边三角形吗?请说明理由.
精英家教网

查看答案和解析>>

同步练习册答案