精英家教网 > 初中数学 > 题目详情

提出问题

如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.
类比探究
如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.
拓展延伸
如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.

(1)证明见试题解析;(2)成立,理由见试题解析;(3)∠ABC=∠ACN,理由见试题解析.

解析试题分析:(1)利用SAS可证明△BAM≌△CAN,继而得出结论;
(2)也可以通过证明△BAM≌△CAN,得出结论,和(1)的思路完全一样;
(3)首先得出∠BAC=∠MAN,从而判定△ABC∽△AMN,得到,根据∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,得到∠BAM=∠CAN,从而判定△BAM∽△CAN,得出结论.
试题解析:(1)∵△ABC、△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵在△BAM和△CAN中,,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN;
(2)结论∠ABC=∠ACN仍成立.理由如下:
∵△ABC、△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵在△BAM和△CAN中,,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN;
(3)∠ABC=∠ACN.理由如下:
∵BA=BC,MA=MN,顶角∠ABC=∠AMN,∴底角∠BAC=∠MAN,∴△ABC∽△AMN,∴,则,又∵∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,∴∠BAM=∠CAN,∴△BAM∽△CAN,∴∠ABC=∠ACN.
考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.等边三角形的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知:如图,在△ABC中,AB=AC,∠A=36°,∠ABC的平分线交AC于D,

(1)求证:△ABC∽△BCD;
(2)若BC=2,求AB的长。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读理解:
如图1,若在四边形ABCD的边AB上任取一点E(点E与点A,B不重合),分别连结ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:
(1)如图1,若∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;
拓展探究:
(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,请直接写出的值.

图1                 图2                       图3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(),解答下列问题:

(1)当为何值时,PQ∥BC?
(2)设△AQP的面积为y(),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;
(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读下面的材料:
小明遇到一个问题:如图(1),在□ABCD中,点E是边BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G. 如果,求的值.

他的做法是:过点E作EH∥AB交BG于点H,则可以得到△BAF∽△HEF.
请你回答:(1)AB和EH的数量关系为    ,CG和EH的数量关系为    的值为    .
(2)如图(2),在原题的其他条件不变的情况下,如果,那么的值为    (用含a的代数式表示).

(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD中,DC∥AB,点E是BC延长线上一点,AE和BD相交于点F. 如果,那么的值为    (用含m,n的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.

(1)求证:△ABC∽△FCD;
(2)若DE=3,BC=8,求△FCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,正△ABC中,∠ADE=60°,

(1)求证:△ABD∽△DCE;
(2)若BD=2,CD=4,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点E.若AE=4,CE=8,DE=3,梯形ABCD的高是,面积是54.求证:AC⊥BD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.

查看答案和解析>>

同步练习册答案