【题目】如图,已知正方形ABCD,点E在BC边上,将△DCE绕某点G旋转得到△CBF,点F恰好在AB边上.
(1)请画出旋转中心G (保留画图痕迹),并连接GF,GE;
(2)若正方形的边长为2a,当CE= 时,S△FGE=S△FBE;当CE= 时,S△FGE=3S△FBE.
【答案】(1)见解析;(2)a ; 或
【解析】
(1)根据旋转图形的性质,点C与点B是对应点,点E点F是对应点,分别作线段BC、EF的垂直平分线的交点就是旋转中心点G.
(2)由旋转的性质可以得出FG=EG,∠FGE=90°,设EC=x,利用勾股定理及三角形的面积公式建立等量关系,就可以求出结论.
(1)如图:分别作线段BC、EF的垂直平分线的交点就是旋转中心点G.
(2)∵G是旋转中心,且四边形ABCD是正方形,
∴FG=EG,∠FGE=90°
∵S△FGE=,且由勾股定理,得2FG2=EF2,
∴S△FGE=,
设EC=x,则BF=x,BE=2a-x,在Rt△BEF中,由勾股定理,得
EF2=x2+(2a-x)2,
∴S△FGE=,
∵S△FBE=,
①当S△FGE=S△FBE时,则
,
解得:x=a;
∴EC=a.
②当S△FGE=3S△FBE时,则,
∴2x2-4ax+a2=0,
解得:x=或x=,
∴EC=或EC=.
考查了旋转对称图形的性质,正方形的性质,三角形的面积及勾股定理的运用.
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,F,G是直径AB上的两点,C,D,E是半圆上的三点,如果弧AC的度数为60°,弧BE的度数为20°,∠CFA=∠DFB,∠DGA=∠EGB.求∠FDG的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则
①二次函数的最大值为a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④当y>0时,﹣1<x<3,其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,O为坐标原点.已知反比例函数y=(k>0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,且△AOB的面积为.
(1)求k和m的值;
(2)求当x≥1时函数值y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是“作已知三角形的高”的尺规作图过程.
已知: .
求作: 边上的高
作法:如图,
(1)分别以点和点为圆心,大于的长为半径作弧,两弧相交于, 两点;
(2)作直线,交于点;
(3)以为圆心, 为半径⊙O,与CB的延长线交于点D,连接AD,线段AD即为所作的高.
请回答;该尺规作图的依据是___________________________________________________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一儿童服装商店在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六·一”儿童节,商店决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装上盈利1200元,那么每件童装应降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分10分)已知A(-4,2),B(2,-4)是一次函数y=kx+b的图象和反比例函数 y =图象的两个交点.
(1)求反比例函数和一次函数的表达式;
(2)将一次函数y=kx+b的图象沿y轴向上平移n个单位长度,交y轴于点C,若S△ABC=12,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=Rt∠,直角边AB、BC的长(AB<BC)是方程2-7+12=0的两个根.点P从点A出发,以每秒1个单位的速度沿△ABC边 A→B→C→A的方向运动,运动时间为t(秒).
(1)求AB与BC的长;
(2)当点P运动到边BC上时,试求出使AP长为时运动时间t的值;
(3)点P在运动的过程中,是否存在点P,使△ABP是等腰三角形?若存在,请求出运动时间t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①,图②都是4×6的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,且点A,B均在格点上.
(1)在图①中以AB为对角线画出一个矩形,使矩形的另外两个顶点也在格点上,且所画的矩形不是正方形;
(2)在图②中以AB为对角线画出一个菱形,使菱形的另外两个顶点也在格点上,且所画的菱形不是正方形;
(3)图①中所画的矩形的面积为 ;图②中所画的菱形的周长为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com