【题目】如图,若抛物线
的顶点
在抛物线
上,抛物线
的顶点
也在抛物线
上(点
与点
不重合),我们定义:这样的两条抛物
,
互为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有多条.
如图
,已知抛物线
与
轴交于点
,试求出点
关于该抛物线对称轴对称的点
的坐标;
请求出以点
为顶点的
的友好抛物线
的解析式,并指出
与
中
同时随
增大而增大的自变量的取值范围;
若抛物
的任意一条友好抛物线的解析式为
,请写出
与
的关系式,并说明理由.
【答案】(1);(2)
,
;(3)
.
【解析】
(1)设x=0,求出y的值,即可得到C的坐标,把抛物线L3:y=2x2﹣8x+4配方即可得到抛物线的对称轴,由此可求出点C关于该抛物线对称轴对称的对称点D的坐标;
(2)由(1)可知点D的坐标为(4,4),再由条件以点D为顶点的L3的“友好”抛物线L4的解析式,可求出L4的解析式,进而可求出L3与L4中y同时随x增大而增大的自变量的取值范围;
(3)根据抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上,可以列出两个方程,相加可得(a1+a2)(h﹣m)2=0.可得a1+a2=0.
(1)∵抛物线L3:y=2x2﹣8x+4,∴y=2(x﹣2)2﹣4,∴顶点为(2,-4),对称轴为x=2,设x=0,则y=4,∴C(0,4),∴点C关于该抛物线对称轴对称的对称点D的坐标为:(4,4);
(2)∵以点D(4,4)为顶点的L3的友好抛物线L4还过点(2,﹣4),∴L4的解析式为y=﹣2(x﹣4)2+4,由图象可知,当2≤x≤4时,抛物线L3与L4中y同时随x增大而增大;
(3)a1与a2的关系式为a1+a2=0.
理由如下:
∵抛物线y=a1 (x﹣m)2+n的一条“友好”抛物线的解析式为y=a2 (x﹣h)2+k,∴y=a2 (x﹣h)2+k过点(m,n),且y=a1 (x﹣m)2+n过点(h,k),即
k=a1 (h﹣m)2+n…①
n=a2 (m﹣h)2+k…②
由①+②得:(a1+a2)(h﹣m)2=0.
又“友好”抛物线的顶点不重合,∴h≠m,∴a1+a2=0.
科目:初中数学 来源: 题型:
【题目】如图,将直角三角形分割成一个正方形和两对全等的直角三角形,在中,
,
,
,
;在正方形
中,
.
探究1
(1)小明发现了求正方形边长的方法:由题意可得,
,因为
,所以
,解得
探究2
(2)小亮发现了另一种求正方形边长的方法:连接,利用
可以得到
与
的关系.请根据小亮的思路完成他的求解过程.
探究3
(3)请结合小明和小亮得到的结论验证勾股定理.(注:根据比例的基本性质,由可得
)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+1与x轴,y轴分别交于B,A两点,动点P在线段AB上移动,以P为顶点作∠OPQ=45°交x轴于点Q.
(1)求点A和点B的坐标;
(2)比较∠AOP与∠BPQ的大小,说明理由.
(3)是否存在点P,使得△OPQ是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,,
.点
在射线
上,利用图,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题.你画图时,选取的
的长约为__________
(精确到0.1
).
(2)为锐角,
,点
在射线
上,点
到射线
的距离为
,
,若
的形状、大小是唯一确定的,则
的取值范围是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】长城科技公司生产销售一种电子产品,该产品总成本包括技术成本、制造成本、销售成本三部分,经核算,年该产品各部分成本所占比例约为
.且
年该产品的技术成本、制造成本分别为
万元、
万元.
确定
的值,并求
年产品总成本为多少万元;
为降低总成本,该公司
年及
年增加了技术成本投入,确保这两年技术成本都比前一年增加一个相同的百分数
,制造成本在这两年里都比前一年减少一个相同的百分数
;同时为了扩大销售量,
年的销售成本将在
年的基础上提高
,经过以上变革,预计
年该产品总成本达到
年该产品总成本的
,求
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD中,AE平分∠BAD,交BC于E,DE⊥AE,下列结论::①DE平分∠ADC;②E是BC的中点;③AD=2CD;④梯形ADCE的面积与△ABE的面积比是3:1,其中正确的结论的个数有( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AE平分∠BAD,交BC于E,过E做EF⊥AD于F,连接BF交AE于P,连接PD.
(1)求证:四边形ABEF是正方形;
(2)如果AB=6,AD=8,求tan∠ADP的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.
(1)求证:AC平分∠BAD;
(2)探究线段PB,AB之间的数量关系,并说明理由;
(3)若AD=3,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两地相距8000米.张亮骑自行车从甲地出发匀速前往乙地,出发10分钟后,李伟步行从甲地出发同路匀速前往乙地.张亮到达乙地后休息片刻,以原来的速度从原路返回.如图所示是两人离甲地的距离y(米)与李伟步行时间x(分)之间的函数图象.
(1)求两人相遇时李伟离乙地的距离;
(2)请你判断:当张亮返回到甲地时,李伟是否到达乙地?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com