如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)
(1)求此二次函数的解析式;
(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.
(1)二次函数的解析式为y=x2+2x﹣3;(2)P(﹣4,5)或(2,5).
解析试题分析:(1)利用待定系数法把A(1,0),C(0,﹣3)代入)二次函数y=x2+bx+c中,即可算出b、c的值,进而得到函数解析式是y=x2+2x﹣3;
(2)首先求出A、B两点坐标,再算出AB的长,再设P(m,n),根据△ABP的面积为10可以计算出n的值,然后再利用二次函数解析式计算出m的值即可得到P点坐标.
试题解析:(1)∵二次函数y=x2+bx+c过点A(1,0),C(0,﹣3),
∴,
解得,
∴二次函数的解析式为y=x2+2x﹣3;
(2)∵当y=0时,x2+2x﹣3=0,
解得:x1=﹣3,x2=1;
∴A(1,0),B(﹣3,0),
∴AB=4,
设P(m,n),
∵△ABP的面积为10,
∴AB•|n|=10,
解得:n=±5,
当n=5时,m2+2m﹣3=5,
解得:m=﹣4或2,
∴P(﹣4,5)(2,5);
当n=﹣5时,m2+2m﹣3=﹣5,
方程无解,
故P(﹣4,5)或(2,5).
考点:二次函数的性质.
科目:初中数学 来源: 题型:解答题
已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,x1,x2是方程x2+4x﹣5=0的两根.
(1)若抛物线的顶点为D,求S△ABC:S△ACD的值;
(2)若∠ADC=90°,求二次函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知二次函数图像与y轴交于点(0,-4),并经过(-1,-6)和(1,2)
(1)求这个二次函数的解析式;
(2)求出这个函数的图像的开口方向,对称轴和顶点坐标;
(3)该函数图像与x轴的交点坐标 .
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点,
(1)求出这条抛物线;
(2)求它与x轴的交点和抛物线顶点的坐标;
(3)x取什么值时,抛物线在x轴上方?
(4)x取什么值时,y的值随x的增大而减小?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
在2014年“元旦”前夕,某商场试销一种成本为30元的文化衫,经试销发现,若每件按34元的价格销售,每天能卖出36件;若每件按39元的价格销售,每天能卖出21件.假定每天销售件数y(件)是销售价格x(元)的一次函数.
(1)直接写出y与x之间的函数关系式y= .
(2)在不积压且不考虑其他因素的情况下,每件的销售价格定为多少元时,才能使每天获得的利润P最大?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
矩形OABC在平面直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线与BC边相交于点D.
(1)求点D的坐标;
(2)若抛物线经过A、D两点,试确定此抛物线的解析式;
(3)设(2)中的抛物线的对称轴与直线AD交于点M,点P为对称轴上一动点,以P、A、M为顶点的三角形与△ABD相似,求符合条件的所有点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,直线交x轴于A点,交y轴于B点,抛物线经过点A、B,交x轴于另一点C,顶点为D.
(1)求抛物线的函数表达式;
(2)求点C、D两点的坐标;
(3)求△ABD的面积;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com