精英家教网 > 初中数学 > 题目详情
2.如图,AD、BE分别是等边△ABC边BC、AC上的中线,AD、BE相交于点O,则∠AOB的度数为(  )
A.120°B.105°C.130°D.135°

分析 根据等腰三角形的三线合一、三角形内角和定理计算即可.

解答 解:∵△ABC是等边三角形,AD、BE分别是△ABC边BC、AC上的中线,
∴∠OAB=∠OBA=30°,
∴∠AOB=120°,
故选:A.

点评 本题考查的是等边三角形的性质、三角形的重心的概念和性质,掌握等腰三角形的三线合一是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.已知x,y互为相反数,a,b互倒数,m的绝对值为3,求代数式4(x+y)-2ab+$\frac{m}{3}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.已知关于x的一元二次方程(k+1)x2+2x-1=0有两个不相等的实数根,则k的取值范围是(  )
A.k≥-2B.k>-2C.k>-2 且k≠-1D.k<-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.某烤鸡店在确定烤鸡的烤制时间时主要根据下面表格中的数据
鸡的质量/kg0.511.522.533.54
烤制时间/min406080100120140160180
(1)由表可知,鸡的质量每增加0.5kg,相应的烤制时间应增加多少分钟?
(2)由表格求出烤制时间y(单位:min)随鸡的质量x(单位:kg)变化的函数解析式;
(3)如果要烤制一只质量为3.2kg的鸡,需烤制多长时间?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,⊙O是△ABC 的外接圆,BC 是直径,D在圆上,连接AD、CD,若∠ADC=35°,则∠ACB=(  )
A.70°?B.55°?C.40°?D.45°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,在△ABC中,
①若BE、CD分别是三角形的角平分线,∠A=n°,则∠BOC=90°+$\frac{1}{2}$n°;
②若BE、CD分别是三角形的高,∠A=n°,则∠BOC=180°-n°;
③若BE、CD分别是三角形的中线,S△BOD=1,则S△COE=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算二:
(1)(-2003)0×2÷$\frac{1}{2}$×[(-$\frac{1}{3}$)2÷23]
(2)(x+2)2-(x-1)(x+1)
(3)(-2x2y+6x3y4-8xy)÷(-2xy)
(4)(x-y+9)(x+y-9)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.某型号体温计中,刻度为35℃处,水银柱长2.5cm,体温每升高1℃,水银柱就伸长0.7cm.
(1)求水银柱长y(cm)随体温x(℃)而变化的函数表达式,其中35≤x≤42,这是不是一次函数?画出它的图象.
(2)分别求当体温为37℃,38.6℃时,水银柱长多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在?ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.若CF=3,BF=4,DF=5,求证:AF平分∠DAB.

查看答案和解析>>

同步练习册答案