问题背景
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为: ,利用函数的图象或通过配方均可求得该函数的最大值.
提出新问题
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
分析问题
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:,问题就转化为研究该函数的最大(小)值了.
解决问题
借鉴我们已有的研究函数的经验,探索函数的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数的图象:
x |
··· |
|
|
|
1 |
2 |
3 |
4 |
··· |
y |
|
|
|
|
|
|
|
|
|
(2)观察猜想:观察该函数的图象,猜想当x= 时,函数有最 值(填
“大”或“小”),是 .
(3)推理论证:问题背景中提到,通过配方可求二次函数的最大值,请你尝试通过配方求函数
的最大(小)值,以证明你的猜想. 〔提示:当
时,
〕
科目:初中数学 来源: 题型:
1 |
2 |
1 |
x |
1 |
x |
1 |
x |
x | … | 1/4 | 1/3 | 1/2 | 1 | 2 | 3 | 4 | … | ||||||||
y | … |
|
|
5 | 4 | 5 |
|
|
… |
1 |
x |
1 |
2 |
1 |
x |
x |
查看答案和解析>>
科目:初中数学 来源:四川省达州市2012年中考数学试题 题型:044
问题背景
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为:>0),利用函数的图象或通过配方均可求得该函数的最大值.
提出新问题
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
分析问题
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:(x>0),问题就转化为研究该函数的最大(小)值了.
解决问题
借鉴我们已有的研究函数的经验,探索函数(x>0)的最大(小)值.
(1)实践操作:填写下表,并用描点法?画出函数(x>0)的图象:
(2)观察猜想:观察该函数的图象,猜想当x=________时,函数(x>0)有最________值(填“大”或“小”),是________.
(3)推理论证:问题背景中提到,通过配方可求二次函数>0)的最
大值,请你尝试通过配方求函数(x>0)的最大(小)值,以证明你的
猜想.(提示:当x>0时,)
查看答案和解析>>
科目:初中数学 来源:2012年初中毕业升学考试(四川达州卷)数学(带解析) 题型:解答题
问题背景
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为: ,利用函数的图象或通过配方均可求得该函数的最大值.
提出新问题
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
分析问题
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:,问题就转化为研究该函数的最大(小)值了.
解决问题
借鉴我们已有的研究函数的经验,探索函数的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数的图象:
x | ··· | ![]() | ![]() | ![]() | 1 | 2 | 3 | 4 | ··· |
y | | | | | | | | | |
查看答案和解析>>
科目:初中数学 来源:四川省中考真题 题型:操作题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com