精英家教网 > 初中数学 > 题目详情
已知点D为等腰△ABC的底边BC的中点,P为AB线段内部的任意一点,设BP的垂直平分线与直线AD交于点E,PC与AD交于点F.求证:直线EP是△APF的外接圆的切线.
证明:∵EG垂直平分BP,
∴EP=BE,
∵AD是等腰三角形ABC底边上的高,
∴AD垂直平分BC,
∴BE=EC,
∴以E为圆心、EB为半径作圆E,则点P、C都在该圆的圆周上,
∴在Rt△ABD中,∠PAE=∠BAE=90°-∠ABC=90°-
1
2
∠PEC=∠EPC,
∵在等腰三角形EPC中,∠EPC=90°-
1
2
∠PEC,
∴∠PAE=∠EPC,
∴EP是△APF的外接圆的切线.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知:⊙O是ABC的内切圆,切点分别为D,E,F,连接DF,作EP⊥DF,垂足为点P,连接PB,PC.求证:∠DPB=∠FPC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=AC,内切圆O与边BC、AC、AB分别切于D、E、F.
(1)求证:BF=CE;
(2)若∠C=30°,CE=2
3
,求AC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知AD、BE是△ABC的中线,AD、BE相交于G,若BE=9cm,则BG=______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我们给出如下定义:三角形三条中线的交点称为三角形的重心.一个三角形有且只有一个重心.可以证明三角形的重心与顶点的距离等于它与对边中点的距离的两倍.
可以根据上述三角形重心的定义及性质知识解答下列问题:
如图,∠B的平分线BE与BC边上的中线AD互相垂直,并且BE=AD=4
(1)猜想AG与GD的数量关系,并说明理由;
(2)求△ABC的三边长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在边长为2的正三角形中,将其内切圆和三个角切圆(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某地有四个村庄E,F,G,H(其位置如图所示),现拟建一个电视信号中转站,信号覆盖的范围是以发射台为圆心的圆形区域.为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(圆形区域半径越小,所需功率越小),此中转站应建在(  )
A.线段HF的中点处B.△GHE的外心处
C.△HEF的外心处D.△GEF的外心处

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

解答题:
(1)设互为补角的两个角的差为60°,求较小角的余角.
(2)设一个角的补角是这个角的余角的5倍,求这个角的度数.
(3)如图,∠1=∠2,∠EMB=55°,试求∠DNF的度数.

(4)如图,△ABC三个顶点分别表示三个小区,AB,BC,AC是连接三个小区的已有自来水管道,某工程队现在要△ABC在内部(包括边上)建一个自来水公司M,M到AB,BC,AC的距离和计为L,已知AB=4,BC=5,AC=6,问自来水供应M在哪个位置,工程对才有最大的经济效益(即L最小)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,BA=BC,∠B=120°,AB的垂直平分线MN交AC于D,求证:AD=
1
2
DC.

查看答案和解析>>

同步练习册答案