【题目】如图,AB是一棵古树,某校初四(1)班数学兴趣小组的同学想利用所学知识测出这棵古树的高,过程如下:在古树同侧的水平地面上,分别选取了C、D两点(C、D两点与古树在同一直线上),用测角仪在C处测得古树顶端A的仰角α=60°,在D处测得古树顶端A的仰角β=30°,又测得C、D两点相距14米.已知测角仪高为1.5米,请你根据他们所测得的数据求出古树AB的高.(精确到0.1米,≈1.732)
【答案】AB的高约为13.6米.
【解析】
如图,连接FE并延长交AB于G,则易得FE=CD=14米,GB=FD=1.5米,由三角形的外角性质和和等腰三角形的判定可得AE=FE,然后根据解直角三角形的知识可求出AG的长,而AB=AG+GB,进而可得结果.
解:如图,连接FE并延长交AB于G,则FG⊥AB,四边形FDBG、CDFE是矩形,FE=CD=14米,GB=FD=EC=1.5米,
∵∠AEG=α=60°,∠AFE=β=30°,∴∠FAE=30°,∴∠AFE=∠FAE,∴AE=FE=14米,
在Rt△AEG中,∵sinα=,∴.
∴AB=AG+GB=+1.5≈13.6米.
即古树AB的高约为13.6米.
科目:初中数学 来源: 题型:
【题目】如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.
①求证:△DAE≌△DCF;
②求证:△ABG∽△CFG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(5,4),B(0,3),C(2,1).
(1)画出△ABC关于原点成中心对称的△A1B1C1,并写出点C1的坐标;
(2)画出将A1B1C1绕点C1按顺时针旋转90°所得的△A2B2C1.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y轴正半轴于点A,AB是⊙C的切线.动点P从点A开始沿AB方向以每秒1个单位长度的速度运动,点Q从O点开始沿x轴正方向以每秒4个单位长度的速度运动,且动点P、Q从点A和点O同时出发,设运动时间为t(秒).
(1)当t=1时,得到P1、Q1,求经过A、P1、Q1三点的抛物线解析式及对称轴l;
(2)当t为何值时,直线PQ与⊙C相切?并写出此时点P和点Q的坐标;
(3)在(2)的条件下,抛物线对称轴l上存在一点N,使NP+NQ最小,求出点N的坐标并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在△ABC中AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.
1.如图1,当∠ABC=45°时,求证:AE=MD;
2.如图2,当∠ABC=60°时,则线段AE、MD之间的数量关系为: .
3.在(2)的条件下延长BM到P,使MP=BM,连接CP,若AB=7,AE=,求tan∠ACP的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在以线段AB为直径的⊙O上取一点,连接AC、BC.将△ABC沿AB翻折后得到△ABD.
(1)试说明点D在⊙O上;
(2)在线段AD的延长线上取一点E,使AB2=AC·AE.求证:BE为⊙O的切线;
(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某中学有一块长为米,宽为米的矩形场地,计划在该场地上修筑宽都为2米的两条互相垂直的道路(阴影部分),余下的四块矩形小场地建成草坪.
(1)请分别写出每条道路的面积(用含或的代数式表示);
(2)若,并且四块草坪的面积之和为144平方米,试求原来矩形场地的长与宽各为多少米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com