【题目】如图,一面利用墙,用篱笆围成的矩形花圃ABCD的面积为Sm2,与墙垂直的AB边长为xm.若墙可利用的最大长度为13m,篱笆总长为24m,花圃中间用一道篱笆隔成两个小矩形.
(1)求S与x之间的函数表达式;
(2)当围成的花圃的面积为45m2时,求AB的长;
(3)当x为何值时,围成的花圃ABCD的面积最大,最大是多少?
【答案】(1)y=24x﹣3x2(≤x<8);(2)AB的长5;(3)当x=4时,y的值最大,最大值y=48.
【解析】
(1)AB的长为xm,则平行于墙的一边长为(24﹣3x)m,该花圃的面积为[(24﹣x)x]m;进而得出函数关系即可;
(2)求出花圃ABCD的面积为45平方米时x的值即可;
(3)根据二次函数的性质即可求出最大值.
(1)y=(24﹣3x)x=24x﹣3x2;
又∵x>0,且13≥24﹣3x>0,∴x<8;
(2)当矩形花圃ABCD的面积为45平方米时,
45=24x﹣3x2,
解得:x=5或x=3;
若x=3,则AB=3m,则BC=15m>13m,舍去.
所以当x=5时,矩形花圃ABCD的面积为45平方米;
(3)y=﹣3x2+24x=﹣3(x﹣4)2+48.
∵﹣3<0,对称轴x=4,4<8,∴当x=4时,y的值最大,最大值y=48.
科目:初中数学 来源: 题型:
【题目】某校九年级有24个班,共1 000名学生,他们参加了一次数学测试.学校统计了所有学生的成绩,得到下列统计图.
(1)求该校九年级学生本次数学测试成绩的平均数;
(2)下列关于本次数学测试说法正确的是( )
A.九年级学生成绩的众数与平均数相等
B.九年级学生成绩的中位数与平均数相等
C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数
D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=5,BC=8,将△ABC绕着点B旋转得到△A′BC′,点A的对应点A′,点C的对应点C′.如果点A′在BC边上,那么点C和点C′之间的距离为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C(0,3),顶点为G.
(1)求抛物线和直线AC的解析式;
(2)如图,设E(m,0)为x轴上一动点,若△CGE和△CGO的面积满足S△CGE=S△CGO,求点E的坐标;
(3)如图,设点P从点A出发,以每秒1个单位长度的速度沿x轴向右运动,运动时间为ts,点M为射线AC上一动点,过点M作MN∥x轴交抛物线对称轴右侧部分于点N.试探究点P在运动过程中,是否存在以P,M,N为顶点的三角形为等腰直角三角形?若存在,求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明想利用影长测量学校旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长是1.4米;此时,他发现旗杆AB的一部分影子BD落在地面上,另一部分影子CD落在楼房的墙壁上,分别测得BD=11.2米,CD=3米,求旗杆AB的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于点A,B,与轴交于点C。过点C作CD∥x轴,交抛物线的对称轴于点D,连结BD。已知点A坐标为(-1,0)。
(1)求该抛物线的解析式;
(2)求梯形COBD的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(0,3),B是x轴正半轴上一动点,将点A绕点B顺时针旋转60°得点C,OB延长线上有一点D,满足∠BDC=∠BAC,则线段BD长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,一段抛物线:,记为,它与轴交于点,;
将绕点旋转得,交轴于点;
将绕点旋转得,交轴于点;
如此进行下去,直到.若在第13段抛物线上,则______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com