精英家教网 > 初中数学 > 题目详情
9.已知:在△ABC中,∠BAC=60°.
(1)如图1,若AB=AC,点P在△ABC内,且∠APC=150°,PA=3,PC=4,把△APC绕着点A顺时针旋转,使点C旋转到点B,得到△ADB,连结DP.
①依题意补全图1;
②直接写出PB的长;
(2)如图2,若AB=AC,点P在△ABC外,且PA=3,PB=5,PC=4,求∠APC的度数;
(3)如图3,若AB=2AC,点P在△ABC内,且PA=$\sqrt{3}$,PB=5,∠APC=120°,直接写出PC的长.

分析 (1)由旋转的性质得到△ADP为等边三角形,从而判断出△BPD为直角三角形,根据勾股定理计算即可;
(2)由旋转的性质得到△DAP是等边三角形,根据勾股定理得逆定理判断出△BPD为直角三角形,即可;
(3)作出△ABQ∽△ACP,判断出△APQ为直角三角形,从而得到△BPQ为直角三角形,根据勾股定理计算即可.

解答 解:(1)①依题意补全图形,如图1所示,

②由旋转有,AD=AP,BD=PC,∠DAB=∠PAC,
∴∠DAP=∠BAC=60°,
∴△ADP为等边三角形,
∴DP=PA=3,∠ADP=60°,
∵∠ADB=∠APC=150°,
∴∠BDP=90°,在Rt△BDP中,BD=4,DP=3,
根据勾股定理得,PB=5;
(2)如图2,

把△APC绕点A顺时针旋转,使点C与点B重合,得到△ADB,连接PD,
∴△APC≌△ADB,
∴AD=AP=3,DB=PC=4,∠PAC=∠DAB,∠APC=∠2,
∴∠DAP=∠BAC,
∵∠BAC=60°,
∴∠DAP=60°,
∴△DAP是等边三角形,
∴PD=3,∠1=60°,
∴PD2+DB2=32+42=52=PB2
∴∠PDB=90°,
∴∠2=30°,
∴∠APC=30°;
(3)如图3

作△ABQ,使得:∠QAB=∠PAC,∠ABQ=∠ACP,则△ABQ∽△ACP,
∴∠AQB=∠APC=120°,
∵AB=2AC,
∴△ABQ与△ACP相似比为2,
∴AQ=2AP=2$\sqrt{3}$,BQ=2CP,∠QAP=∠QAB+∠BAP=∠PAC+∠BAP=∠BAC=60°,
∵$\frac{AQ}{AP}$=2,
∴∠APQ=90°,PQ=3,
∴∠AQP=30°
∴∠BQP=∠AQB-∠AQP=120°-30°=90°,
根据勾股定理得,BQ=$\sqrt{P{B}^{2}-P{Q}^{2}}$=4,
∴PC=$\frac{1}{2}$BQ=2.

点评 此题是几何变换综合题,主要考查了旋转的性质,直角三角形的性质和判断方法,勾股定理,直角三角形的判定是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.关于反比例函数y=-$\frac{6}{x}$,下列说法正确的是(  )
A.图象过点(3,2)B.图象在第一、三象限
C.当x>0时,y随x的增大而减少D.当x<0时,y随x的增大而增大

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.下列计算正确的是(  )
A.(a23=a5B.a6÷a3=a3C.an•an=2anD.a2+a2=a4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列计算错误的是(  )
A.$\sqrt{2}×\sqrt{5}=\sqrt{10}$B.$\sqrt{2}+\sqrt{5}=\sqrt{7}$C.$\sqrt{18}÷\sqrt{2}=3$D.$\sqrt{12}=2\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.求x的值:
(1)(x+3)3=-27
(2)16(x-1)2-25=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.为了解某区九年级学生身体素质情况,该区从全区九年级学生中随机抽取了部分学生进行了一次体育考试科目测试(把测试结果分为四个等级:A级:优秀:B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如图两幅不完整的统计图.请根据统计图中的信息解答下列问题:
(1)本次抽样测试的学生是40;
(2)求图1中∠α的度数是144°,把图2条形统计图补充完整;
(3)该区九年级有学生3500名,如果全部参加这次体育科目测试,请估计不及格的人数为175.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列计算正确的是(  )
A.x3•x3=2x3B.4${\;}^{-2}=\frac{1}{16}$C.$\sqrt{9}=±3$D.(x32=x5

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,AB∥CD,∠A=46°,∠C=27°,则∠AEC的大小应为73°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,一段抛物线y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O和A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3,…如此进行下去,得到一条“波浪线”.若点P(41,m)在此“波浪线”上,则m的值为(  )
A.2B.-2C.0D.$\frac{9}{4}$

查看答案和解析>>

同步练习册答案