精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,AC切⊙O于点A,AD是⊙O的弦,OC⊥AD于F交⊙O于点E,连接DE、BE、BD、AE.
(1)求证:∠ACO=∠BED;
(2)连接CD,证明:直线CD是⊙O的切线;
(3)如果DEAB,AB=2cm,求四边形AEDB的面积.
(1)证明:∵AB是⊙O的直径,CA切⊙O于点A,
∴∠CAO=90°,
∴∠ACO+∠AOC=90°,
又∵OC⊥AD,
∴∠OFA=90°,
∴∠AOC+∠BAD=90°,
∴∠ACO=∠BAD,
又∵∠BED=∠BAD,
∴∠ACO=∠BED;

(2)连接CD、OD,
∵OC⊥AD,
AE
=
DE

∴∠DOC=∠AOC,
在△OAC和△ODC中,
OC=OC
∠AOC=∠DOC
OA=OD

∴△OAC≌△ODC(SAS),
∴∠ODC=∠OAC,
又∵CA切⊙O于点A,
∴∠OAC=90°,
∴∠ODC=90°,
∴CD是⊙O的切线;

(3)∵OC⊥AD,
AE
=
DE

又∵DEAB,
∴∠BAD=∠EDA,
BD
=
AE

BD
=
DE
=
AE

∴∠DBE=∠ABE=∠BAD,AE=BD=DE,
又∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠BAD=30°,
∴BD=
1
2
AB=1cm,DE=1cm,
在Rt△ABD中,由勾股定理得:AD=
3

过点D作DH⊥AB于H,
∵∠HAD=30°,
∴DH=
1
2
AD=
3
2

∴四边形AEDB的面积为:
1
2
(DE+AB)•DH
1
2
(DE+AB)•DH
=
1
2
×(1+2)×
3
2
=
3
3
4
(cm2).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

AB为⊙O的直径,C为弧AE的中点,CD⊥AB于D,AE交CD于点P,边接CB,过E作EFBC,交AB的延长线于F.
(1)求证:PA=PC.
(2)当E点在什么位置时,EF是⊙O的切线?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,一种圆管的横截面是同心圆的圆环面,大圆的弦AB切小圆于点C,大圆的弦AD交小圆于点E和F.为了计算截面的面积,甲、乙、丙三个同学分别用刻度尺测量出有关线段的长度:甲测得AB的长,乙测得AC的长,丙测得AD与EF的长.其中可以算出截面(图中阴影部分)面积的同学是(  )
A.甲、乙B.乙、丙C.甲、丙D.甲、乙、丙

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,从点P引⊙O的切线PA,PB,切点分别为A,B,DE切⊙O于C,交PA,PB于D,E.若△PDE的周长为20cm,则PA=______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,扇形OAB的半径OA=r,圆心角∠AOB=90°,点C是
AB
上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,点M在DE上,DM=2EM,过点C的直线PC交OA的延长线于点P,且∠CPD=∠CDE.
(1)求证:DM=
2
3
r;
(2)求证:直线PC是扇形OAB所在圆的切线;
(3)设y=CD2+3CM2,当∠CPO=60°时,请求出y关于r的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB是⊙O的直径,CD是⊙O的切线,C为切点,∠D=40°,则∠B的度数为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知两圆的半径分别为1和3,当这两圆圆心距为4时,这两圆的位置关系是(  )
A.内切B.相交C.外离D.外切

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

两圆的直径分别为8cm、6cm,一条外公切线长为8cm,则这两个圆的位置关系是(  )
A.外离B.内切C.外切D.相交

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,⊙O1与⊙O2相交于点A和点B,且点O1在⊙O2上,过点A的直线CD分别与⊙O1、⊙O2交于点C、D,过点B的直线EF分别与⊙O1、⊙O2交于点E、F,⊙O2的弦O1D交AB于P.
求证:(1)CEDF;
(2)O1A2=O1P•O1D.

查看答案和解析>>

同步练习册答案