精英家教网 > 初中数学 > 题目详情

点A在直线l上,点P在直线l外,PA=xcm.点P到直线l的距离为ycm,则x,y的大小关系为________.

x≥y
分析:根据垂线段的性质:垂线段最短可直接得到答案.
解答:根据垂线段最短可得x≥y.
故答案为:x≥y.
点评:此题主要考查了垂线段的性质,关键是掌握垂线段最短.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图①,点A′,B′的坐标分别为(2,0)和(0,-4),将△A′B′O绕点O按逆时针方向旋转90°后得△ABO,点A′的对应点是点A,点B′的对应点是点B.
(1)写出A,B两点的坐标,并求出直线AB的解析式;
(2)将△ABO沿着垂直于x轴的线段CD折叠,(点C在x轴上,点D在AB上,点D不与A,B重合)如图②,使点B落在x轴上,点B的对应点为点E.设点C的坐标为(x,0),△CDE与△ABO重叠部分的面积为S.
①试求出S与x之间的函数关系式(包括自变量x的取值范围);
②当x为何值时,S的面积最大,最大值是多少?
③是否存在这样的点C,使得△ADE为直角三角形?若存在,直接写出点C的坐标;精英家教网若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•常州)平面上有两条直线AB、CD相交于点O,且∠BOD=150°(如图),现按如下要求规定此平面上点的“距离坐标”:
(1)点O的“距离坐标”为(0,0);
(2)在直线CD上,且到直线AB的距离为p(p>0)的点的“距离坐标”为(p,0);在直线AB上,且到直线CD的距离为q(q>0)的点的“距离坐标”为(0,q);
(3)到直线AB、CD的距离分别为p,q(p>0,q>0)的点的“距离坐标”为(p,q).
设M为此平面上的点,其“距离坐标”为(m,n),根据上述对点的“距离坐标”的规定,解决下列问题:
(1)画出图形(保留画图痕迹):
①满足m=1,且n=0的点M的集合;
②满足m=n的点M的集合;
(2)若点M在过点O且与直线CD垂直的直线l上,求m与n所满足的关系式.(说明:图中OI长为一个单位长)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄埔区一模)如图,Rt△ADE可由Rt△CAB旋转而成,点B的对应点是E,点A的对应点是D,点B、C的坐标分别为(3,0),(1,4).
(1)写出点E的坐标,并利用尺规作图直接在图中作出旋转中心Q(保留作图痕迹,不写作法);
(2)求直线AE对应的函数关系式;
(3)将△ADE沿垂直于x轴的线段PT折叠,(点T在x轴上,点P在AE上,P与A、E不重合)如图,使点A落在x轴上,点A的对应点为点F.设点T的坐标为(x,0),△PTF与△ADE重叠部分的面积为S.
①试求出S与x之间的函数关系式(包括自变量x的取值范围);
②当x为何值时,S的面积最大?最大值是多少?
③是否存在这样的点T,使得△PEF为直角三角形?若存在,直接写出点T的坐标;若不存在,请说有理由.

查看答案和解析>>

科目:初中数学 来源:第6章《二次函数》中考题集(36):6.4 二次函数的应用(解析版) 题型:解答题

如图①,点A′,B′的坐标分别为(2,0)和(0,-4),将△A′B′O绕点O按逆时针方向旋转90°后得△ABO,点A′的对应点是点A,点B′的对应点是点B.
(1)写出A,B两点的坐标,并求出直线AB的解析式;
(2)将△ABO沿着垂直于x轴的线段CD折叠,(点C在x轴上,点D在AB上,点D不与A,B重合)如图②,使点B落在x轴上,点B的对应点为点E.设点C的坐标为(x,0),△CDE与△ABO重叠部分的面积为S.
①试求出S与x之间的函数关系式(包括自变量x的取值范围);
②当x为何值时,S的面积最大,最大值是多少?
③是否存在这样的点C,使得△ADE为直角三角形?若存在,直接写出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年北京市延庆县中考数学二模试卷(解析版) 题型:解答题

如图①,点A′,B′的坐标分别为(2,0)和(0,-4),将△A′B′O绕点O按逆时针方向旋转90°后得△ABO,点A′的对应点是点A,点B′的对应点是点B.
(1)写出A,B两点的坐标,并求出直线AB的解析式;
(2)将△ABO沿着垂直于x轴的线段CD折叠,(点C在x轴上,点D在AB上,点D不与A,B重合)如图②,使点B落在x轴上,点B的对应点为点E.设点C的坐标为(x,0),△CDE与△ABO重叠部分的面积为S.
①试求出S与x之间的函数关系式(包括自变量x的取值范围);
②当x为何值时,S的面积最大,最大值是多少?
③是否存在这样的点C,使得△ADE为直角三角形?若存在,直接写出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案