【题目】如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙.
(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子,并用线段表示;
(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗杆的高DE=15m,旗杆与高墙的距离EG=16m,请求出旗杆的影子落在墙上的长度.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△AOP为等边三角形,点A(0,1),B为y轴上一动点,以BP为边作等边△PBC.
(1)当点B运动到(0,4)时,AC= ;
(2)∠CAP的度数为 ;
(3)当点B运动时,AE的长度是否发生变化?若不变,求出AE的值;若变化,说明变化的规律.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△DEC都是等腰直角三角形,∠ACB=∠DCE=90°,E在线段AC上,连接AD, BE的延长线交AD于F.
(1)猜想线段BE、AD的数量关系和位置关系:_______________(不必证明);
(2)当点E为△ABC内部一点时,使点D和点E分别在AC的两侧,其它条件不变.
①请你在图2中补全图形;
②(1)中结论成立吗?若成立,请证明;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC和等边△ECD的边长相等,BC与CD两边在同一直线上,请根据如下要求,使用无刻度的直尺,通过连线的方式画图.
(1)在图1中画一个直角三角形; (2)在图2中画出∠ACE的平分线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形的边上任取一点(点不与点、点重合),分别连接,,可以把四边形分成三个三角形,如果其中有两个三角形相似,我们就把叫做四边形的边上的相似点;如果这三个三角形都相似,我们就把叫做四边形的边上的强相似点.
如图,画出矩形中的边上的一个强相似点.(要求:画图工具不限,不写画法,保留画图痕迹或有必要说明).
对于任意的一个矩形,是否一定存在强相似点?如果一定存在,请说明理由;如果不一定存在,请举出反例.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,,.
用直尺和圆规作的平分线,交于,并在上取一点,使,再连接,交于;(要求保留作图痕迹,不必写出作法)
依据现有条件,直接写出图中所有相似的三角形,并求出.(图中不再增加字母和线段,不要求证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,OABC的顶点A的坐标为(6,0),顶点B的纵坐标为5.点D是x轴正半轴上一点(不与点A重合),点D的坐标为(x,0),△ODC与△DAB的面积分别记为S1、S2,设S=S1﹣S2.
(1)用含x的代数式表示线段AD的长.
(2)求S与x之的函数关系式.
(3)当S与△DBC的面积相等时,求x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.
(1)求证:四边形DBEC是菱形;
(2)若AD=3,DF=1,求四边形DBEC面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
如图,把沿直线平行移动线段的长度,可以变到的位置;
如图,以为轴,把翻折,可以变到的位置;
如图,以点为中心,把旋转,可以变到的位置.
像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.
回答下列问题:
①在图中,可以通过平行移动、翻折、旋转中的哪一种方法怎样变化,使变到的位置;
②指图中线段与之间的关系,为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com