分析 过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,再利用“HL”证明Rt△ADF和Rt△ADH全等,Rt△DEF和Rt△DGH全等,然后根据全等三角形的面积相等列方程求解即可.
解答 解:如图,过点D作DH⊥AC于H,
∵AD是△ABC的角平分线,DF⊥AB,
∴DF=DH,
在Rt△ADF和Rt△ADH中,$\left\{\begin{array}{l}{AD=AD}\\{DF=DH}\end{array}\right.$,
∴Rt△ADF≌Rt△ADH(HL),
∴SRt△ADF=SRt△ADH,
在Rt△DEF和Rt△DGH中,$\left\{\begin{array}{l}{DE=DG}\\{DF=DH}\end{array}\right.$,
∴Rt△DEF≌Rt△DGH(HL),
∴SRt△DEF=SRt△DGH,
∵△ADG和△AED的面积分别为26和16,
∴16+SRt△DEF=26-SRt△DGH,
∴SRt△DEF=5,
故答案为:5.
点评 本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并作辅助线构造出全等三角形是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 0.1(精确到0.1) | B. | 0.05(精确到百分位) | ||
C. | 0.06(精确到0.01) | D. | 0.0549(精确到0.0001) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com