精英家教网 > 初中数学 > 题目详情
(2013年四川资阳8分)在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.

(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;
(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.
解:(1)如图,过点O作OE⊥AC于E,则AE=AC=×2=1。

∵翻折后点D与圆心O重合,∴OE=r。
在Rt△AOE中,AO2=AE2+OE2,即r2=12+(r)2
解得r=
(2)连接BC,

∵AB是直径,∴∠ACB=90°。
∵∠BAC=25°,∴∠B=90°﹣∠BAC=90°﹣25°=65°。
根据翻折的性质,所对的圆周角等于所对的圆周角
∴∠DCA=∠B﹣∠A=65°﹣25°=40°。
(1)过点O作OE⊥AC于E,根据垂径定理可得AE=AC,再根据翻折的性质可得OE=r,然后在Rt△AOE中,利用勾股定理列式计算即可得解。
(2)连接BC,根据直径所对的圆周角是直角求出∠ACB,根据直角三角形两锐角互余求出∠B,再根据翻折的性质得到所对的圆周角,然后根据∠ACD等于所对的圆周角减去所对的圆周角,计算即可得解。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(1)问题探究
数学课上,李老师给出以下命题,要求加以证明.
如图1,在△ABC中,M为BC的中点,且MA=BC,求证∠BAC=90°.
同学们经过思考、讨论、交流,得到以下证明思路:
思路一 直接利用等腰三角形性质和三角形内角和定理…
思路二 延长AM到D使DM=MA,连接DB,DC,利用矩形的知识…
思路三 以BC为直径作圆,利用圆的知识…
思路四…
请选择一种方法写出完整的证明过程;
(2)结论应用
李老师要求同学们很好地理解(1)中命题的条件和结论,并直接运用(1)命题的结论完成以下两道题:
①如图2,线段AB经过圆心O,交⊙O于点A,C,点D在⊙O上,且∠DAB=30°,OA=a,OB=2a,求证:直线BD是⊙O的切线;
②如图3,△ABC中,M为BC的中点,BD⊥AC于D,E在AB边上,且EM=DM,连接DE,CE,如果∠A=60°,请求出△ADE与△ABC面积的比值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线与⊙O相切于点D,过圆心O作EF∥交⊙O于E、F两点,点A是⊙O上一点,连接AE,AF,并分别延长交直线于B、C两点;

(1)求证:∠ABC+∠ACB=90°;
(2)若⊙O的半径,BD=12,求tan∠ACB的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在⊙O中,∠ABC=50°,则∠AOC等于【   】
A.50°B.80°C.90°D.100°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径作圆,若圆C与直线AB相切,则r的值为
A.2cmB.2.4cmC.3cmD.4cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2013年浙江义乌3分)两圆半径分别为2和3,圆心距为5,则这两个圆的位置关系是【   】
A.内切B.相交C.相离D.外切

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2013年四川绵阳12分)如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE.

(1)判断CD与⊙O的位置关系,并证明你的结论;
(2)若E是的中点,⊙O的半径为1,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2013年四川广安8分)雅安芦山发生7.0级地震后,某校师生准备了一些等腰直角三角形纸片,从每张纸片中剪出一个半圆制作玩具,寄给灾区的小朋友.已知如图,是腰长为4的等腰直角三角形ABC,要求剪出的半圆的直径在△ABC的边上,且半圆的弧与△ABC的其他两边相切,请作出所有不同方案的示意图,并求出相应半圆的半径(结果保留根号).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在边长为2的正方形ABCD中,以点D为圆心、DC为半径作,点E在AB上,且与A、B两点均不重合,点M在AD上,且ME=MD,过点E作EF⊥ME,交BC于点F,连接DE、MF.

(1)求证:EF是所在⊙D的切线;
(2)当MA=时,求MF的长;
(3)试探究:△MFE能否是等腰直角三角形?若是,请直接写出MF的长度;若不是,请说明理由.

查看答案和解析>>

同步练习册答案