精英家教网 > 初中数学 > 题目详情

已知:在⊙O的内接三角形ABC中,AB=AC,D是⊙O上一点,AD的延长线交BC的延长线于点P.

(1)求证:AB2=AD·AP;

(2)⊙O的直径为25,AB=20,求BC的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,四边形ABCD为圆内接四边形,对角线AC、BD相交于点O,在不添加辅助线的情况下,请写出由已知条件可得出的三个不同的正确结论:
(1)
∠BAC=∠BDC
,(2)
∠BAC+∠BCD=180°
,(3)
△BAD∽△CDA
(注:其中关于角的结论不得多于两个).

查看答案和解析>>

科目:初中数学 来源: 题型:

顶点在矩形边上的菱形叫做矩形的内接菱形.如图,矩形ABCD中,已知:AB=a,BC=b(a<b),(1)、(2)、(3)是三种不同内接菱形的方式.
①图(1)中,若AH=BG=AB,则四边形ABGH是矩形ABCD的内接菱形;
②图(2)中,若点E、F、G和H分别是AB、BC、CD和DE的中点,则四边形EFGH是矩形ABCD的内接菱形;
③图(3)中,若EF垂直平分对角线AC,交BC于点E,交AD于点F,交AC于点O,则四边形AECF是矩形ABCD的内接菱形.
(1)请你从①,②,③三个命题中选择一个进行证明;
(2)在图(1)、(2)、(3)中,证明图(3)中菱形AECF是这三个不同的矩形ABCD的内接菱形面积最大的;
(3)比较(1)、(2)中矩形ABCD的内接菱形ABGH与EFGH的面积大小;
(4)在矩形ABCD中,你还能画出第4种矩形内接菱形吗?若能,请在(4)中画出;若不能,则说明理由.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•高安市二模)如图,在下列矩形ABCD中,已知:AB=a,BC=b(a<b),假定顶点在矩形边上的菱形叫做矩形的内接菱形,现给出(Ⅰ)、(Ⅱ)、(Ⅲ)三个命题:
命题(Ⅰ):图①中,若AH=BG=AB,则四边形ABGH是矩形ABCD的内接菱形;
命题(Ⅱ):图②中,若点E、F、G和H分别是AB、BC、CD和DE的中点,则四边形EFGH是矩形ABCD的内接菱形;
命题(Ⅲ):图③中,若EF垂直平分对角线AC,变BC于点E,交AD于点F,交AC于点O,则四边形AECF是矩形ABCD的内接菱形.
请解决下列问题:
(1)命题(Ⅰ)、(Ⅱ)、(Ⅲ)都是真命题吗?请你在其中选择一个,并证明它是真命题或假命题;
(2)画出一个新的矩形内接菱形(即与你在(1)中所确认的,但不全等的内接菱形).
(3)试探究比较图①,②,③中的四边形ABGH、EFGH、AECF的面积大小关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•盐都区一模)问题提出
我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
问题解决
如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.
解:由图可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
类比应用
(1)已知:多项式M=2a2-a+1,N=a2-2a.试比较M与N的大小.
(2)已知:如图2,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a<b<c,现将△ABC 补成长方形,使得△ABC的两个顶
点为长方形的两个端点,第三个顶点落在长方形的这一边的对边上.
①这样的长方形可以画
3
3
个;
②所画的长方形中哪个周长最小?为什么?
拓展延伸
已知:如图3,锐角△ABC(其中BC为a,AC为b,AB为c)三边满足a<b<c,画其BC边上的内接正方形EFGH,使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏盐城盐都区九年级下学期期中质量检测数学试卷(解析版). 题型:解答题

问题提出

我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.

问题解决

如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.

解:由图可知:M=a2+b2,N=2ab.

∴M-N=a2+b2-2ab=(a-b)2

∵a≠b,∴(a-b)2>0.

∴M-N>0.

∴M>N.

类比应用

1.已知:多项式M =2a2-a+1 ,N =a2-2a .试比较M与N的大小.

2.已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边

满足a <b < c ,现将△ABC 补成长方形,使得△ABC的两个顶

点为长方形的两个端点,第三个顶点落在长方形的这一边的对边上。                     

      ①这样的长方形可以画        个;

②所画的长方形中哪个周长最小?为什么?

拓展延伸                                                                                                                               

     已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?

 

 

查看答案和解析>>

同步练习册答案