精英家教网 > 初中数学 > 题目详情
已知如图:△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,则FC(AC+EC)=   
【答案】分析:条件得知△ABC是等腰直角三角形,∴△AOD也是等腰直角三角形,∴OD=OA,∴D(0,m-3),又P(1,0)为抛物线顶点,可设顶点式,根据条件求出抛物线的解析式为y=x2-2x+1,设Q(x,x2-2x+1),过Q点分别作x轴,y轴的垂线,运用相似比求出FC、EC的长,而AC=m,代入即可.
解答:解:∵∠ODA=∠OAD=45°,
∴OD=OA=m-3,则点D的坐标是(0,m-3).
又抛物线顶点为P(1,0),且过点B、D,
所以可设抛物线的解析式为:y=a(x-1)2
得:
解得:
∴抛物线的解析式为y=x2-2x+1;
过点Q作QM⊥AC于点M,过点Q作QN⊥BC于点N,
设点Q的坐标是(x,x2-2x+1),
则QM=CN=(x-1)2,MC=QN=3-x.
∵QM∥CE,
∴△PQM∽△PEC,


∴EC=2(x-1).
∵QN∥FC,
∴△BQN∽△BFC,



∵AC=4,
∴FC(AC+EC)=[4+2(x-1)]=(2x+2)=×2×(x+1)=8.
故答案为:8.
点评:本题考查了点的坐标,抛物线解析式的求法,综合运用相似三角形的比求线段的长度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图:△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,则FC(AC+EC)=
8
8

查看答案和解析>>

科目:初中数学 来源: 题型:

选做题
已知如图,△ABC为直角三角形纸片,∠C=90°,AC≤BC,将纸片沿EF折叠,使A点精英家教网落在BC上D点,若△DCE和△FBD都是等腰三角形,
(1)则∠B=
 

(2)若△DFE和△FBD都是等腰三角形,求∠B.

查看答案和解析>>

科目:初中数学 来源:北京期末题 题型:解答题

选做题
已知如图,△ABC为直角三角形纸片,∠C=90°,AC⊥BC,将纸片沿EF折叠,使A点落在BC上D点,若△DCE和△FBD都是等腰三角形。
(1)则∠B= _________
(2)若△DFE和△FBD都是等腰三角形,求∠B。

查看答案和解析>>

同步练习册答案