分析 首先利用勾股定理的逆定理证明△ABC是直角三角形,作ND⊥AB于点D,则ND=NC,根据三角形的面积公式求得NC的长,然后利用勾股定理求得BN的长,利用三角函数的定义求解.
解答 解:∵32+42=52,即BC2+AC2=AB2,
∴△ABC值直角三角形,∠C=90°.
作ND⊥AB于点D.
∵BN是角平分线,
∴NC=ND,
设NC=ND=x,
又∵S△ABC=S△ABN+S△BCN,即$\frac{1}{2}$AC•BC=$\frac{1}{2}$AB•ND+$\frac{1}{2}$BC•NC,
∴3×4=5x+3x,
解得:x=$\frac{3}{2}$.
在直角△BCN中,BN=$\sqrt{B{C}^{2}+N{C}^{2}}$=$\sqrt{{3}^{2}+(\frac{3}{2})^{2}}$=$\frac{3\sqrt{5}}{2}$,
则sin∠CBN=sin∠ABN=$\frac{NC}{BN}$=$\frac{\frac{3}{2}}{\frac{3\sqrt{5}}{2}}$=$\frac{\sqrt{5}}{5}$.
故答案是:$\frac{\sqrt{5}}{5}$,$\frac{\sqrt{5}}{5}$.
点评 本题考查了勾股定理的逆定理以及三角函数的定义,三角函数表示直角三角形中边长的比,根据定义作出辅助线是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | x+$\frac{1}{x}$=0 | B. | ax2+bx+c=0 | C. | (x-1)(x+2)=1 | D. | 3x2-2xy-5y2=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com