精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0(

A.没有实根
B.只有一个实根
C.有两个实根,且一根为正,一根为负
D.有两个实根,且一根小于1,一根大于2

【答案】D
【解析】解:由图可知:抛物线y=ax2+bx+c的图象与x轴的交点横坐标的取值范围是0<x1<1,2<x2<3,
则一元二次方程ax2+bx+c=0有两个实根,且一根小于1,一根大于2.
故选D.
【考点精析】解答此题的关键在于理解抛物线与坐标轴的交点的相关知识,掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,D、E为边AB上的两个点,且AE=AC,BD=BC,∠BCF=70°,则∠DCE=度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知有理数ab在数轴上的对应点如图所示.

(1)已知a=–2.3,b=0.4,计算|a+b|–|a|–|1–b|的值;

(2)已知有理数ab,计算|a+b|–|a|–|1–b|的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A39.546.5B46.553.5C53.560.5D60.567.5E67.574.5),并依据统计数据绘制了如下两幅尚不完整的统计图.

解答下列问题:

1)这次抽样调查的样本容量是 ,并补全频数分布直方图;

2C组学生的频率为 ,在扇形统计图中D组的圆心角是 度;

3)请你估计该校初三年级体重超过60kg的学生大约有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.

原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,

连接EF,则EF=BE+DF,试说明理由.

(1)思路梳理

∵AB=AD

∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合

∵∠ADC=∠B=90°

∴∠FDG=180°

点F、D、G共线

根据 ,易证△AFG≌ 进而得EF=BE+DF.

(2)联想拓展

如图2,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的量关系,并写出推理过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O逆时针方向旋转90°
得到△OA1B1

(1)线段A1B1的长是 , ∠AOA1的度数是
(2)连结AA1 , 求证:四边形OAA1B1是平行四边形;
(3)求四边形OAA1B1的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0(

A.没有实根
B.只有一个实根
C.有两个实根,且一根为正,一根为负
D.有两个实根,且一根小于1,一根大于2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面内,△ABC和△ABD如图①放置,其中AB=BD.
小明做了如下操作:
将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图②,请完成下列问题:

(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;
(2)连接EF,CD,如图③,求证:四边形CDEF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A是双曲线y= (x>0)上一点,过点A作AB∥x轴,交双曲线y=﹣ (x<0)于点B,若OA⊥OB,则 的值为(

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案