精英家教网 > 初中数学 > 题目详情
已知一次函数y1=x+m的图象与反比例函数的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2

(1)求一次函数的解析式;
(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.
(1)y1=x+5  (2)21

试题分析:(1)首先根据x>1时,y1>y2,0<x<1时,y1<y2确定点A的横坐标,然后代入反比例函数解析式求出点A的纵坐标,从而得到点A的坐标,再利用待定系数法求直线解析式解答;
(2)根据点C到y轴的距离判断出点C的横坐标,代入反比例函数解析式求出纵坐标,从而得到点C的坐标,过点C作CD∥x轴交直线AB于D,求出点D的坐标,然后得到CD的长度,再联立一次函数与双曲线解析式求出点B的坐标,然后△ABC的面积=△ACD的面积+△BCD的面积,列式进行计算即可得解.
解:(1)∵当x>1时,y1>y2;当0<x<1时,y1<y2
∴点A的横坐标为1,
代入反比例函数解析式,=y,
解得y=6,
∴点A的坐标为(1,6),
又∵点A在一次函数图象上,
∴1+m=6,
解得m=5,
∴一次函数的解析式为y1=x+5;
(2)∵第一象限内点C到y轴的距离为3,
∴点C的横坐标为3,
∴y==2,
∴点C的坐标为(3,2),
过点C作CD∥x轴交直线AB于D,

则点D的纵坐标为2,
∴x+5=2,
解得x=﹣3,
∴点D的坐标为(﹣3,2),
∴CD=3﹣(﹣3)=3+3=6,
点A到CD的距离为6﹣2=4,
联立
解得(舍去),
∴点B的坐标为(﹣6,﹣1),
∴点B到CD的距离为2﹣(﹣1)=2+1=3,
SABC=SACD+SBCD=×6×4+×6×3=12+9=21.
点评:本题考查了反比例函数图象与一次函数图象的交点问题,根据已知条件先判断出点A的横坐标是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

在式子:①y=3x;②y=;③;④xy=3中,y是x的反比例函数的是  

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2)

(1)填空:a=  ;k=  
(2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.
①当BM=DM时,求△ODM的面积;
②当BM=2DM时,求出直线MA的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在(k>0)的图象上有两点A(1,4),B(4,1),过这两点分别向x轴引垂线交x轴于C,D两点.连接OA,OB,AC与BO相交与点E,记△OAE,梯形EBCD的面积分别为S1,S2,则有
A.S1>S2B.S1=S2C.S1<S2D.不能确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,过点C(2, 1)分别作x轴、y轴的平行线,交直线
y=-x+5于A、B两点,若反比例函数y=(x>0)的图象
与△ABC有公共点,则k的取值范围是(   )

A.2≤k≤4     B.2≤k≤6     C.2≤k     D.2≤k 

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若xy≠0,x+y≠0,与x+y成反比,则(x+y)2与x2+y2(  )
A.成正比B.成反比
C.既不成正也不成反比D.的关系不确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知一次函数y=3x+m与反比例函数y=的图象有两个交点,当m=  时,有一个交点的纵坐标为6.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

正方形的A1B1P1P2顶点P1、P2在反比例函数y= (x>0)的图象上,顶点A1、B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y= (x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为  

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知k1<0<k2,则函数y=k1x和的图象大致是(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案