精英家教网 > 初中数学 > 题目详情
13.如图,C、D将线段AB分成2:3:4三部分,E、F分别是AC、BD的中点,且AB=36,求EF的长.

分析 先根据C、D将线段AB分成2:3:4三部分,求得AC=8,CD=12,DB=16,再根据E、F分别是AC、BD的中点,求得CE=$\frac{1}{2}$AC=4,DF=$\frac{1}{2}$DB=8,最后计算EF的长.

解答 解:∵C、D将线段AB分成2:3:4三部分,且AB=36,
∴AC=8,CD=12,DB=16
又∵E、F分别是AC、BD的中点,
∴CE=$\frac{1}{2}$AC=4,DF=$\frac{1}{2}$DB=8,
∴EF=EC+CD+DF=4+12+4=20.

点评 本题主要考查了两点间的距离,解决问题的关键是利用线段的和差关系进行求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.某商场购进一批日用品,若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.
(1)试求y与x之间的函数关系式;
(2)若这批日用品购进时单价为4元,则当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:$\frac{1}{{x}^{2}-6x+9}$+$\frac{x}{9-{x}^{2}}$+$\frac{1}{2x+6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知关于x的方程3a-x=$\frac{x}{2}$+3的解是x=4,求a2-2a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.认真阅读下面材料并解答下面的问题:
在一次函数y=kx+b(k≠0)中,可以作如下变形:kx=y-b$x=\frac{1}{k}y-\frac{b}{k}$(k≠0)
再把$x=\frac{1}{k}y-\frac{b}{k}$中的x,y互换,得到$y=\frac{1}{k}x-\frac{b}{k}$,
此时我们就把函数$y=\frac{1}{k}x-\frac{1}{k}b$(k≠0)叫做函数y=kx+b的反函数.
同时,如果两个函数解析式相同,自变量的取值范围也相同,则称这两个函数为同一函数.
(1)求函数$y=\frac{1}{2}x+1$与它的反函数的交点坐标;
(2)若函数y=kx+2与它的反函数是同一函数,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图(1),足球场上守门员李伟在O处抛出一高球,球从离地面1m处的点A飞出,其飞行的最大高度是4m,最高处距离飞出点的水平距离是6m,且飞行的路线是抛物线一部分.以点O为坐标原点,竖直向上的方向为y轴的正方向,球飞行的水平方向为x轴的正方向建立坐标系,并把球看成一个点.(参考数据:4$\sqrt{3}$≈7,2$\sqrt{6}$≈5)

(1)求足球的飞行高度y(m)与飞行水平距离x(m)之间的函数关系式;
(2)在没有队员干扰的情况下,球飞行的最远水平距离是多少?
(3)若对方一名1.7m的队员在距落点C3m的点H处,跃起0.3m进行拦截,则这名队员能拦到球吗?
(4)如图(2),在(2)的情况下,若球落地后又一次弹起,据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半,那么足球弹起后,会弹出多远?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.若方程组$\left\{\begin{array}{l}{2x+5y=2}\\{3x+2y=k}\end{array}\right.$的解满足x+y>0,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在△ABC中,AB=AC,D为BC边上的中点,过点D作DE⊥AB于E,DF⊥AC于F.当△ABC再满足什么条件时,四边形DFAE是正方形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,在△ABC中,点D、E分别在边AB、BC上,且BD=6cm,DA=3cm,BE=4cm,若DE平行于AC,则EC=2cm.

查看答案和解析>>

同步练习册答案