精英家教网 > 初中数学 > 题目详情
精英家教网在△ABC中,∠B=60°,∠A,∠C的角平分线AE,CF相交于点O,
(1)如图1,若AB=BC,求证:OE=OF;
(2)如图2,若AB≠BC,试判断线段OE与OF是否相等,并说明理由.
分析:(1)可证明△ACF≌△CAE,再由角平分线的性质得出∠OAC=∠OCA,从而得出OE=OF;
(2)过点O作OH⊥AC,OM⊥BC,ON⊥AB,垂足分别为H,M,N,连接OB.根据角平分线的性质定理以及逆定理可推得点O在∠B的平分线上,从而得出∠OBN=∠OBM=30°,由已知得出∠OEM=∠OFN,能证明Rt△OFN≌Rt△OEM,则OE=OF成立.
解答:证明:(1)∵∠B=60°,AB=BC,
∴∠A=∠C=60°,
∵AECF分别平分∠A,∠C,
∴∠OAC=∠OCA=30°,
∴OA=OC,△ACF≌△CAE(ASA),
∴AE=CF,
∴OE=OF;

(2)过点O作OH⊥AC,OM⊥BC,ON⊥AB,垂足分别为H,M,N,连接OB.
∵点O在∠A,∠C的平分线上,精英家教网
∴ON=OH,OH=OM,从而OM=ON,
∴点O在∠B的平分线上   (1分)
∴∠OBN=∠OBM=30°,ON=OM   (2分)
又∠OEM=∠B+
1
2
∠A=60°+
1
2
∠A
∠OFN=∠A+
1
2
∠C=
1
2
(∠A+∠C)+
1
2
∠A=
1
2
(180°-60°)+
1
2
∠A=60°+
1
2
∠A.
∴∠OEM=∠OFN.(2分)
∴Rt△OFN≌Rt△OEM(AAS),(1分)
∴OE=OF.(1分)
点评:本题考查了全等三角形的判定和性质以及角平分线的性质,注意一题多解以及方法的简单性.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC为边向△ABC外作等边△ABD和等边△ACE.
精英家教网
(1)如图1.连接BE、CD,BE与CD交于点O,
①证明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如图2,连接DE,交AB于点F.DF与EF相等吗?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在△ABC中,边AC的垂直平分线交BC于点D,交AC于点E、已知△ABC中与△ABD的周长分别为18cm和12cm,则线段AE的长等于
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是(  )
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,a=
2
,b=
6
,c=2
2
,则最大边上的中线长为(  )
A、
2
B、
3
C、2
D、以上都不对

查看答案和解析>>

同步练习册答案