精英家教网 > 初中数学 > 题目详情

已知为锐角,且,则等于

A.   B.   C.   D.

 

【答案】

C

【解析】解:由题意得,,故选C。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ACB与△DFE是两个全等的直角三角形,量得它们的斜边长为10cm,较小锐角为30°,将这两个三角形摆成如图1所示的形状,使点B、C、F、D在同一条直线上,且点C与点F重合,将图1中的△ACB绕点C顺时针精英家教网方向旋转到图2的位置,点E在AB边上,AC交DE于点G,则线段FG的长为
 
cm(保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•安徽模拟)如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.

(1)如点P为锐角△ABC的费马点.且∠ABC=60°,PA=3,PC=4,求PB的长.
(2)如图(2),在锐角△ABC外侧作等边△ACB′连结BB′.求证:BB′过△ABC的费马点P,且BB′=PA+PB+PC.
(3)已知锐角△ABC,∠ACB=60°,分别以三边为边向形外作等边三角形ABD,BCE,ACF,请找出△ABC的费马点,并探究S△ABC与S△ABD的和,S△BCE与S△ACF的和是否相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中,∠ACB为锐角,D是射线BC上一动点(D与C不重合).以AD为一边向右侧作等边△ADE(C与E不重合),连接CE.
(1)若△ABC为等边三角形,当点D在线段BC上时,(如图1所示),则直线BD与直线CE所夹锐角为
60
60
度;
(2)若△ABC为等边三角形,当点D在线段BC的延长线上时(如同2所示),你在(1)中得到的结论是否仍然成立?请说明理由;
(3)若△ABC不是等边三角形,且BC>AC(如图3所示).试探究当点D在线段BC上时,你在(1)中得到的结论是否仍然成立?若成立,请说明理由;若不成立,请指出当∠ACB满足什么条件时,能使(1)中的结论成立?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ACB与△DFE是两个全等的直角三角形,量得它们的斜边长为8cm,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B、C、F、D在同一条直线上,且点C与点F重合,将图(1)中的△ACB绕点C顺时针方向旋转到图(2)的位置,点E在AB边上,AC交DE于点G,则线段FG的长为
2
3
2
3
cm(保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ACB与△DFE是两个全等的直角三角形,量得它们的斜边长为10cm,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B、C、F、D在同一条直线上,且点C与点F重合,将图(1)中的△ACB绕点C顺时针方向旋转到图(2)的位置,点E在边AB上,AC交DE于点G,则线段FG的长为
5
3
2
5
3
2
cm(保留根号)

查看答案和解析>>

同步练习册答案