【题目】已知式子 是关于x的二次多项式,且二次项系数为b,数轴上A、B两点所对应的数分别是a和b.
(1)则a=____,b=____.A、B两点之间的距离:____;
(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到2019次时,求点P所对应的有理数.
(3)在(2)的条件下,点P会不会在某次运动时恰好到达某一个位置,使点P到点B的距零离是点P到点A的距离的3倍?若可能请求出此时点P的位置,若不可能请说明理由.
【答案】(1)-4;8;12;(2)-1041;(3)存在点P,使点P到点B的距零离是点P到点A的距离的3倍;点P所对应的有理数分别是-10和-1.
【解析】
(1)根据二次多项式的定义得出,由此得出a的值,然后由多项式的系数的定义得到b的值,则易求线段AB的值;
(2)根据题意得到点P每一次运动后所在的位置,然后由有理数的加法进行计算即可;
(3)设点P对应的有理数的值为x,分情况进行解答:点P在点A的左侧,点P在点A、B之间,点P在点B的右侧三种情况.
(1)∵ 是关于x的二次多项式,且二次项系数为b,
∴
则
∴A、B两点之间的距离为
故答案为-4;8;12
(2)依题意得,-4-1+2-3+4-5+6-7+……+2018-2019
=-4+1009-2019
=-1041
故点P所对应的有理数的值为-1041.
(3)设点P对应的有理数的值为x
①当点P在点A的左侧时,
PA=-4-x,PB=8-x
依题意得,8-x=3(-4-x)
解得x=-10;
②当点P在点A和点B之间时,
PA=x-(-4)=x+4,PB=8-x
依题意得,8-x=3(x+4)
解得x=-1;
③当点P在点B的右侧时,
PA=x-(-4)=x+4,PB=x-8
依题意得,x-8=3(x+4)
解得x=-10,这与点P在点B的右侧(即x>8)矛盾,故舍去;
综上所述,点P所对应的有理数分别是-10和-1.
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,其顶点坐标为(1,n),且与x轴的一个交点在(3,0)和(4,0)之间,则下列结论:
①ac
②a﹣b+c>0;
③当时,y随x的增大而增大
若(﹣,y1),(,y2)是抛物线上的两点,则y1y2;
④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.
其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点的坐标为(,),点是轴正半轴上的一动点,以为边作等腰直角,使,设点的横坐标为,点的纵坐标为,能表示与的函数关系的图象大致是
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题9分)据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有___名,扇形统计图中“基本了解”部分所对应扇形的圆心角为___;请补全条形统计图;
(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数;
(3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形;
(2)若CE=2,∠BCF=120°,求菱形BCFE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD中,E是BC边上一点,F是BA延长线上一点,AF=CE,连接BD,EF,FG平分∠BFE交BD于点G.
(1)求证:△ADF≌△CDE;
(2)求证:DF=DG;
(3)如图2,若GH⊥EF于点H,且EH=FH,设正方形ABCD的边长为x,GH=y,求y与x之间的关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)求证:CD是⊙O的切线;
(2)过点B作⊙O的切线交CD的延长线于点E,BC=6, .求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【问题发现】
(1)如图(1),四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为__________;
【拓展探究】
(2)如图(2),在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;
【解决问题】
(3)如图(3),在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).
设这种双肩包每天的销售利润为w元.
(1)求w与x之间的函数解析式;
(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com