【题目】如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,若E在AD上.
求证:(1)BE⊥CE;
(2)BC=AB+CD.
【答案】(1)证明见解析;(2)证明见解析
【解析】
(1)先根据同旁内角互补得到∠1+∠2+∠3+∠4=180°,再利用角平分线性质即可解答,
(2)在BC上取点F,使BF=BA,连接EF,证明△ABE≌△FBE(SAS),△CDE≌△CFE(AAS)即可解题.
证明:如图所示:
(1)∵BE、CE分别是∠ABC和∠BCD的平分线,
∴∠1=∠2,∠3=∠4,
又∵AB∥CD,
∴∠1+∠2+∠3+∠4=180°,
∴∠2+∠3=90°,
∴∠BEC=90°,
∴BE⊥CE.
(2)在BC上取点F,使BF=BA,连接EF.
在△ABE和△FBE中,
,
∴△ABE≌△FBE(SAS),
∴∠A=∠5.
∵AB∥CD,
∴∠A+∠D=180°,
∴∠5+∠D=180,
∵∠5+∠6=180°,
∴∠6=∠D,
在△CDE和△CFE中,
,
∴△CDE≌△CFE(AAS),
∴CF=CD.
∵BC=BF+CF,
∴BC=AB+CD,
科目:初中数学 来源: 题型:
【题目】如图,在锐角三角形ABC中,AB=10,S△ABC=30,∠ABC的平分线BD交AC于点D,点M、N分别是BD和BC上的动点,则CM+MN的最小值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在平面直角坐标系中,△ABC各顶点的坐标分别为:A(4,0),B(﹣1,4),C(﹣3,1)
(1)在图中作△A′B′C′使△A′B′C′和△ABC关于x轴对称;
(2)写出点A′B′C′的坐标;
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
给出了结论:
(1)二次函数有最小值,最小值为﹣3;
(2)当时,y<0;
(3)二次函数的图象与x轴有两个交点,且它们分别在y轴两侧.
则其中正确结论的个数是
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长为2,宽为的矩形纸片(),剪去一个边长等于矩形宽度的正方形(称为第一次操作);
(1)第一次操作后剩下的矩形长为,宽为 ;
(2)再把第一次操作后剩下的矩形剪去一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.
①求第二次操作后剩下的矩形的面积;
②若在第3次操作后,剩下的图形恰好是正方形,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,已知∠MAN=120°,AC平分∠MAN,∠ABC=∠ADC=90°,则能得到如下两个结论:①DC=BC;②AD+AB=AC. 请你证明结论②.
(2)如图,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)如图3,如果D在AM的反向延长线上,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC=∠ADC,其他条件不变,(1)中的结论是否仍然成立?若成立,请直接回答;若不成立,你又能得出什么结论,直接写出你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】仔细阅读下面例题,解答问题
例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.
解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n),
则x2﹣4x+m=x2+(n+3)x+3n
∴
解得:n=﹣7,m=﹣21.
∴另一个因式为(x﹣7),m的值为﹣21.
问题:
(1)若二次三项式x2﹣5x+6可分解为(x﹣2)(x+a),则a= ;
(2)若二次三项式2x2+bx﹣5可分解为(2x﹣1)(x+5),则b= ;
(3)仿照以上方法解答下面问题:若二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com