精英家教网 > 初中数学 > 题目详情

【题目】如图,在长度为1个单位长度的小正方形组成的正方形中,点ABC在小正方形的顶点上.

在图中画出与关于直线l成轴对称的

三角形ABC的面积为______;

AC为边作与全等的三角形,则可作出______个三角形与全等;

在直线l上找一点P,使的长最短.

【答案】(1)见解析;(2)3;(3)2;(4)见解析.

【解析】

(1)分别作各点关于直线l的对称点,再顺次连接即可;(2)利用矩形的面积减去三个顶点上三角形的面积即可;(3)根据勾股定理找出图形即可;(4)连接B′C交直线l于点P,则P点即为所求.

解:(1)如图,△AB′C′即为所求;

(2)S△ABC=2×4﹣×2×1﹣×1×4﹣×2×2=8﹣1﹣2﹣2=3.

故答案为:3;

(3)如图,△AB1C,△AB2C,△AB3C即为所求.

故答案为:3;

(4)如图,P点即为所求.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(﹣1,0)、C(0,﹣3)两点,与x轴交于另一点B.

(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系:

(1)求抛物线的解析式;
(2)一辆货车高4m,宽2m,能否从该隧道内通过,为什么?
(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在三角形纸片 ABC 中,AB=15cm,AC=9cm,BC=12cm, 现将边 AC 沿过点 A 的直线折叠,使它落在 AB 边上.若折痕交 BC 于点 D,点 C 落在点 E 处,你能求出 BD 的长吗?请写出求解过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程
(1)x2﹣4x+1=0
(2)3(x﹣2)2=x(x﹣2).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为(
A.1
B.2
C.12 ﹣6
D.6 ﹣6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣4,2)、(1,﹣4),且ADx轴,交y轴于M点,ABx轴于N.

(1)求B、D两点坐标和长方形ABCD的面积;

(2)一动点PA出发(不与A点重合),以个单位/秒的速度沿ABB点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、MPO、PON之间的数量关系;

(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.
(1)求证:四边形DBFE是平行四边形;
(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司为了解员工对“六五”普法知识的知晓情况,从本公司随机选取40名员工进行普法知识考查,对考查成绩进行统计(成绩均为整数,满分100分),并依据统计数据绘制了如下尚不完整的统计表.解答下列问题:

组别

分数段/分

频数/人数

频率

1

50.5~60.5

2

a

2

60.5~70.5

6

0.15

3

70.5~80.5

b

c

4

80.5~90.5

12

0.30

5

90.5~100.5

6

0.15

合计

40

1.00


(1)表中a= , b= , c=
(2)请补全频数分布直方图;
(3)该公司共有员工3000人,若考查成绩80分以上(不含80分)为优秀,试估计该公司员工“六五”普法知识知晓程度达到优秀的人数.

查看答案和解析>>

同步练习册答案