【题目】如图,在平面直角坐标系中,已知三个顶点的坐标分别是.
(1)请在图中,画出绕着点逆时针旋转后得到的,则的正切值为 .
(2)以点为位似中心,将缩小为原来的,得到,请在图中轴左侧,画出,若点是上的任意一点,则变换后的对应点的坐标是 .
科目:初中数学 来源: 题型:
【题目】某校文体艺术节期间,举办“爱我云南,唱我云南”文艺晚会.每个班推荐一个节目参加晩会表演,参加晚会表演的节目均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,明明根据获奖情况绘制岀如图所示的两幅统计图.请你根据图中所给信息解答下列问题.
(1)二等奖的获奖人数所占的百分比是 ;
(2)在此次比赛中,一共有多少同学参赛?请将折线统计图补充完整.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.
类别 | A | B | C | D | E |
节目类型 | 新闻 | 体育 | 动画 | 娱乐 | 戏曲 |
人数 | 12 | 30 | m | 54 | 9 |
请你根据以上的信息,回答下列问题:
(1)被调查的学生中,最喜爱体育节目的有 人,这些学生数占被调查总人数的百分比为 %.
(2)被调查学生的总数为 人,统计表中m的值为 ,统计图中n的值为 .
(3)在统计图中,E类所对应扇形圆心角的度数为 .
(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数轴上的A、B、C三点所表示的数分别为a、b、1,且|a﹣1|+|b﹣1|=|a﹣b|,则下列选项中,满足A、B、C三点位置关系的数轴为( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一辆轿车在经过某路口的感应线B和C处时,悬臂灯杆上的电子警察拍摄到两张照片,两感应线之间距离BC为6m,在感应线B、C两处测得电子警察A的仰角分别为∠ABD=18°,∠ACD=14°.求电子警察安装在悬臂灯杆上的高度AD的长.
(参考数据:sin14°≈0.242,cos14°≈0.97,tan14°≈0.25,sin18°≈0.309,cos18°≈0.951,tan18°≈0.325)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(问题引入)
如图(1),在中,,,过作则交延长线于点,则易得
(直接应用)
如图,已知等边的边长为,点, 分别在边, 上, , 为中点,为当上一动点,当在何处时,与相似,求的值.
(拓展应用)
已知在平行四边形中,,,,,,求长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】联想三角形外心的概念,我们可引入如下概念。
定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心。
举例:如图1,若PA=PB,则点P为△ABC的准外心。
应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB的度数。
探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左、右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b2展开式中的系数等.
(1)(a+b)n展开式中项数共有 项.
(2)写出(a+b)5的展开式:(a+b)5= .
(3)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣2,3),B(﹣3,2),C(﹣1,1).
(1)若将△ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A1B1C1;
(2)画出△A1B1C1绕原点顺时针旋90°后得到 的△A2B2C2;
(3)若△A′B′C′与△ABC是中心对称图形,则对称中心的坐标为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com