精英家教网 > 初中数学 > 题目详情
将边长OA=8,OC=10的矩形OABC放在平面直角坐标系中,顶点O为原点,顶点C、A分别在x轴和y轴上.在OA、OC边上选取适当的点E、F,连接EF,将△EOF沿EF折叠,使点O落在AB边上的点D处.
精英家教网
(1)如图1,当点F与点C重合时,OE的长度为
 

(2)如图2,当点F与点C不重合时,过点D作DG∥y轴交EF于点T,交OC于点G.求证:EO=DT;
(3)在(2)的条件下,设T(x,y),写出y与x之间的函数关系式为
 
,自变量x的取值范围是
 

(4)如图3,将矩形OABC变为平行四边形,放在平面直角坐标系中,且OC=10,OC边上的高等于8,点F与点C不重合,过点D作DG∥y轴交EF于点T,交OC于点G,求出这时T(x,y)的坐标y与x之间的函数关系式(不求自变量x的取值范围).
分析:(1)根据折叠的性质可得出DE=OE,OC=CD.
如果设出E点的坐标,可用E的纵坐标表示出AE、ED的长.
可根据相似三角形ADE和CDB得出的关于AE,BC,AD,BD的比例关系式求出E点的纵坐标.也就求出了E的坐标和OE的长.
(2)本题可通过证DT=OE来求出,如果连接OD,那么EF必垂直平分OD,如果设OD与EF的交点为P,那么OP=DP,△OEP≌△DPT,可得DT=OE;
(3)可先根据T的坐标表示出AD,AE,然后可在直角三角形ADE中表示出DE.而DE又可用AO-AE表示.可以此来求出y,x的函数关系式.
在(1)中给出的情况就是x的最小值的状况,可根据AD的长求出x的最小值,当x取最大值时,EF平分∠OAB,即E′与A重合,四边形EOGD为正方形,可据此求出此时x的值.有了x的最大和最小取值即可求出x的取值范围.
(4)的结论和(3)完全相同,求法也几乎完全一样.
解答:精英家教网(1)5.
解:根据题意,运用勾股定理得BD=6,AD=4.
设OE=x,则DE=x,AE=8-x.
在Rt△ADE中,x2=(8-x)2+42
解得x=5.即OE=5.

(2)证明:如图1,∵△EDF是由△EFO折叠得到的,
∴∠1=∠2.
又∵DG∥y轴,∠1=∠3.
∴∠2=∠3.
∴DE=DT.
∵DE=EO,
∴EO=DT.

(3)y=-
1
16
x2+4.
4<x≤8.
精英家教网
(4)解:如图2,连接OT,
由折叠性质可得OT=DT.
∵DG=8,TG=y,
∴OT=DT=8-y.
∵DG∥y轴,
∴DG⊥x轴.
在Rt△OTG中,∵OT2=OG2+TG2
∴(8-y)2=x2+y2
∴y=-
1
16
x2+4.
点评:本题主要考查了矩形和平行四边形的性质,三角形相似和全等,图形的翻折变换,二次函数的应用等知识点.主要考查学生数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•南沙区一模)将边长OA=8,OC=10的矩形OABC放在平面直角坐标系中,顶点O为原点,顶点C、A分别在x轴和y轴上.在OA边上选取适当的点E,连接CE,将△EOC沿CE折叠.

(1)如图①,当点O落在AB边上的点D处时,点E的坐标为
(0,5)
(0,5)

(2)如图②,当点O落在矩形OABC内部的点D处时,过点E作EG∥x轴交CD于点H,交BC于点G.求证:EH=CH;
(3)在(2)的条件下,设H(m,n),写出m与n之间的关系式
m=
1
20
n2+5
m=
1
20
n2+5

(4)如图③,将矩形OABC变为正方形,OC=10,当点E为AO中点时,点O落在正方形OABC内部的点D处,延长CD交AB于点T,求此时AT的长度.

查看答案和解析>>

科目:初中数学 来源:2013年广东省广州市南沙区中考一模数学试卷(带解析) 题型:解答题

将边长OA=8,OC=10的矩形OABC放在平面直角坐标系中,顶点O为原点,顶点C、A分别在轴和y轴上.在OA边上选取适当的点E,连接CE,将△EOC沿CE折叠。

(1)如图①,当点O落在AB边上的点D处时,点E的坐标为           ;
(2)如图②,当点O落在矩形OABC内部的点D处时,过点EEG轴交CD于点H,交BC于点G.求证:EHCH
(3)在(2)的条件下,设Hmn),写出mn之间的关系式                           
(4)如图③,将矩形OABC变为正方形,OC=10,当点EAO中点时,点O落在正方形OABC内部的点D处,延长CDAB于点T,求此时AT的长度。

查看答案和解析>>

科目:初中数学 来源:2013年广东省广州市南沙区中考一模数学试卷(解析版) 题型:解答题

将边长OA=8,OC=10的矩形OABC放在平面直角坐标系中,顶点O为原点,顶点C、A分别在轴和y轴上.在OA边上选取适当的点E,连接CE,将△EOC沿CE折叠。

(1)如图①,当点O落在AB边上的点D处时,点E的坐标为           ;

(2)如图②,当点O落在矩形OABC内部的点D处时,过点EEG轴交CD于点H,交BC于点G.求证:EHCH

(3)在(2)的条件下,设Hmn),写出mn之间的关系式                           

(4)如图③,将矩形OABC变为正方形,OC=10,当点EAO中点时,点O落在正方形OABC内部的点D处,延长CDAB于点T,求此时AT的长度。

 

查看答案和解析>>

科目:初中数学 来源:2009年北京市朝阳区中考数学二模试卷(解析版) 题型:解答题

(2009•朝阳区二模)将边长OA=8,OC=10的矩形OABC放在平面直角坐标系中,顶点O为原点,顶点C、A分别在x轴和y轴上.在OA、OC边上选取适当的点E、F,连接EF,将△EOF沿EF折叠,使点O落在AB边上的点D处.

(1)如图1,当点F与点C重合时,OE的长度为______;
(2)如图2,当点F与点C不重合时,过点D作DG∥y轴交EF于点T,交OC于点G.求证:EO=DT;
(3)在(2)的条件下,设T(x,y),写出y与x之间的函数关系式为______,自变量x的取值范围是______;
(4)如图3,将矩形OABC变为平行四边形,放在平面直角坐标系中,且OC=10,OC边上的高等于8,点F与点C不重合,过点D作DG∥y轴交EF于点T,交OC于点G,求出这时T(x,y)的坐标y与x之间的函数关系式(不求自变量x的取值范围).

查看答案和解析>>

同步练习册答案