2£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬µãP£¨a£¬b£©µÄ¡°±ä»»µã¡±QµÄ×ø±ê¶¨ÒåÈçÏ£ºµ±a¡Ýbʱ£¬Qµã×ø±êΪ£¨b£¬-a£©£»µ±a£¼bʱ£¬Qµã×ø±êΪ£¨a£¬-b£©£®
£¨1£©Çó£¨-2£¬3£©£¬£¨6£¬-1£©µÄ±ä»»µã×ø±ê£»
£¨2£©ÒÑÖªÖ±ÏßlÓëxÖá½»ÓÚµãA£¨4£¬0£©£¬ÓëyÖá½»ÓÚµãB£¨0£¬2£©£®ÈôÖ±ÏßlÉÏËùÓеãµÄ±ä»»µã×é³ÉÒ»¸öеÄͼÐΣ¬¼Ç×÷ͼÐÎW£¬Çë»­³öͼÐÎW£¬²¢¼òҪ˵Ã÷»­Í¼µÄ˼·£»
£¨3£©ÈôÅ×ÎïÏßy=-$\frac{3}{4}$x2+cÓëͼÐÎWÓÐÈý¸ö½»µã£¬ÇëÖ±½Óд³öcµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©¸ù¾Ý¡°±ä»»µã¡±µÄ¶¨Òå½â´ð¼´¿É£»
£¨2£©ÏÈÇó³öÖ±ÏßlÉϺá×ø±êÓë×Ý×ø±êÏàµÈµÄµãC£¬È»ºóÕÒ³öµãA¡¢B¡¢CµÄ¡°±ä»»µã¡±A¡ä¡¢B¡ä¡¢C¡ä£¬ÔÙ×÷ÉäÏßC¡äA¡ä¡¢C¡äB¡ä¼´¿É£»
£¨3£©¸ù¾ÝͼÐΣ¬Å×ÎïÏßW¾­¹ýµãC¡äºÍÓëÉäÏßC¡äB¡äÏàÇÐʱͼÐÎWÓÐÈý¸ö½»µã£¬È»ºó·Ö±ðÇó½â¼´¿É£®

½â´ð ½â£º£¨1£©£¨-2£¬3£©µÄ±ä»»µã×ø±êÊÇ£¨-2£¬-3£©£¬
£¨6£¬-1£©µÄ±ä»»µã×ø±êÊÇ£¨-1£¬-6£©£»

£¨2£©Ö±ÏßABµÄ½âÎöʽΪy=-$\frac{1}{2}$x+2£¬
x=yʱ£¬x=$\frac{4}{3}$£¬
ËùÒÔ£¬µãCµÄ×ø±êΪ£¨$\frac{4}{3}$£¬$\frac{4}{3}$£©£¬
µãC¡äµÄ±ä»»µãµÄ×ø±êΪ£¨$\frac{4}{3}$£¬-$\frac{4}{3}$£©£¬
AµÄ±ä»»µãµÄ×ø±êΪ£¨0£¬-4£©£¬
BµÄ±ä»»µãµÄ×ø±êΪ£¨0£¬-2£©£¬
»­Í¼Ë¼Â·£º¢ÙÓɵãA¡¢BµÄ×ø±êÇó³öÖ±ÏßlµÄ½âÎöʽ£¬
¢ÚÇó³öÖ±ÏßlÉϺá×ø±êÓë×Ý×ø±êÏàµÈµÄµãC×ø±ê£¬Çó³öËüµÄ±ä»»µãC¡äµÄ×ø±ê£¬
¢ÛÔÚÖ±ÏßlÉϵãCÁ½²àµÄµãA¡¢BÈ·¶¨³öËûÃǵı任µãA¡ä¡¢B¡ä£¬
¢Ü×÷ÉäÏßC¡äA¡ä¡¢C¡äB¡ä£¬
ÉäÏßC¡äA¡äºÍC¡äB¡ä×é³ÉµÄͼÐμ´ÎªËùÇó£»

£¨3£©Å×ÎïÏß¾­¹ýµãC¡äʱ£¬-$\frac{4}{3}$=-$\frac{3}{4}$¡Á£¨$\frac{4}{3}$£©2+c£¬
½âµÃc=0£¬
Å×ÎïÏßÓëÉäÏßC¡äB¡äÏàÇÐʱ£¬ÉèÖ±ÏßC¡äB¡ä½âÎöʽΪy=kx+b£¬
Ôò$\left\{\begin{array}{l}{\frac{4}{3}k+b=-\frac{4}{3}}\\{b=-2}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=\frac{1}{2}}\\{b=-2}\end{array}\right.$£¬
ËùÒÔ£¬Ö±ÏßC¡äB¡äµÄ½âÎöʽΪy=$\frac{1}{2}$x-2£¬
ÓëÅ×ÎïÏßÁªÁ¢ÏûµôyµÃ£¬-$\frac{3}{4}$x2+c=$\frac{1}{2}$x-2£¬
ÕûÀíµÃ£¬3x2+2x-4c-8=0£¬
¡÷=22-4¡Á3£¨-4c-8£©=0£¬
½âµÃc=-$\frac{25}{12}$£¬
×ÛÉÏËùÊö£¬cµÄÈ¡Öµ·¶Î§Îªc=-$\frac{25}{12}$»òc=0£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýͼÐÎÓ뼸ºÎ±ä»»£¬Ö÷ÒªÀûÓÃÁË´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¬Å×ÎïÏßÓëÖ±ÏߵĽ»µãÎÊÌ⣬¸ùµÄÅбðʽ£¬¶Á¶®ÌâÄ¿ÐÅÏ¢£¬Àí½â¡°±ä»»µã¡±µÄ¶¨ÒåÊǽâÌâµÄ¹Ø¼ü£¬ÄѵãÔÚÓÚ£¨3£©ÅжϳöÈý¸ö½»µãµÄÇé¿ö£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Èçͼ£¬¡÷ABCÄÚ½ÓÓÚ¡ÑO£¬OD¡ÍBCÓÚµãD£¬Èô¡ÏA=70¡ã£¬Ôò¡ÏCODµÄ´óСΪ70¡ã£¨¶È£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬°ë¾¶¾ùΪ1¸öµ¥Î»³¤¶ÈµÄ°ëÔ²O1¡¢O2¡¢O3£¬¡­×é³ÉÒ»Ìõƽ»¬µÄÇúÏߣ¬µãP´ÓÔ­µãO³ö·¢£¬ÑØÕâÌõÇúÏßÏòÓÒÔ˶¯£¬ËÙ¶ÈΪÿÃë$\frac{¦Ð}{2}$¸öµ¥Î»³¤¶È£¬ÔòµÚ2017Ãëʱ£¬µãPµÄ×ø±êÊÇ£¨2017£¬1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÇåÃ÷½ÚÊÇÖйú´«Í³½ÚÈÕ£¬Ëü²»½öÊÇÈËÃÇÔ¶×ã̤ÇàµÄÈÕ×Ó£¬¸üÊǼÀµì×æÏÈ¡¢Ã廳ÏÈÈ˵ĽÚÈÕ£®ÊÐÃñÕþ¾ÖÌṩµÄÊý¾ÝÏÔʾ£¬½ñÄêÇåÃ÷½Úµ±ÌìÈ«ÊÐ213´¦¼Àɨµã¹²½Ó´ýȺÖÚ264000ÈË£¬½«264000ÓÿÆѧ¼ÇÊý·¨±íʾӦΪ£¨¡¡¡¡£©
A£®264¡Á103B£®2.64¡Á104C£®2.64¡Á105D£®0.264¡Á106

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬¸ø³öÈç϶¨Ò壺ÈôµãPÔÚͼÐÎMÉÏ£¬µãQÔÚͼÐÎNÉÏ£¬³ÆÏ߶ÎPQ³¤¶ÈµÄ×îСֵΪͼÐÎM£¬NµÄÃܾ࣬¼ÇΪd£¨M£¬N£©£®ÌرðµØ£¬ÈôͼÐÎM£¬NÓй«¹²µã£¬¹æ¶¨d£¨M£¬N£©=0£®
£¨1£©Èçͼ1£¬¡ÑOµÄ°ë¾¶Îª2£¬
¢ÙµãA£¨0£¬1£©£¬B£¨4£¬3£©£¬Ôòd£¨A£¬¡ÑO£©=1£¬d£¨B£¬¡ÑO£©=3£®
¢ÚÒÑÖªÖ±Ïßl£ºy=$\frac{3}{4}x+b$Óë¡ÑOµÄÃܾàd£¨l£¬¡ÑO£©=$\frac{6}{5}$£¬ÇóbµÄÖµ£®
£¨2£©Èçͼ2£¬CΪxÖáÕý°ëÖáÉÏÒ»µã£¬¡ÑCµÄ°ë¾¶Îª1£¬Ö±Ïßy=-$\frac{\sqrt{3}}{3}x$$+\frac{4\sqrt{3}}{3}$ÓëxÖá½»ÓÚµãD£¬ÓëyÖá½»ÓÚµãE£¬Ï߶ÎDEÓë¡ÑCµÄÃܾàd£¨DE£¬¡ÑC£©£¼$\frac{1}{2}$£®ÇëÖ±½Óд³öÔ²ÐÄCµÄºá×ø±êmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®½â·½³Ì£º$\frac{x}{x-2}+\frac{1}{2-x}=2$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¼ÆË㣺2sin45¡ã-£¨$¦Ð-\sqrt{5}$£©0$+£¨\frac{1}{2}£©^{-1}$$+|\sqrt{2}-1|$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖª£º¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2+2x+k=0ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£®
£¨1£©ÇókµÄÈ¡Öµ·¶Î§£»
£¨2£©µ±kÈ¡×î´óÕûÊýֵʱ£¬ÓúÏÊʵķ½·¨Çó¸Ã·½³ÌµÄ½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬ÒÑ֪бÆÂAPµÄƶÈΪi=1£º$\sqrt{3}$£¬Æ³¤APΪ20m£¬Óëƶ¥A´¦ÔÚͬ-ˮƽÃæÉÏÓÐ-×ù¹ÅËþBC£¬ÔÚбƵ×P´¦²âµÃ¸ÃËþµÄËþ¶¥BµÄÑö½ÇΪ45¡ã£¬ÔÚƶ¥A´¦²âµÃ¸ÃËþµÄËþ¶¥BµÄÑö½Ç¦ÁÇÒtan¦Á=3£®Çó£º
£¨1£©Çóƶ¥Aµ½µØÃæPQµÄ¾àÀ룻
£¨2£©¹ÅËþBCµÄ¸ß¶È£¨½á¹û±£Áô¸ùºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸