精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,点的坐标为,点轴上,是线段的中点.将线段绕着点顺时针方向旋转,得到线段,连结

(1)判断的形状,并简要说明理由;
(2)当时,试问:以为顶点的四边形能否为平行四边形?若能,求出相应的 的值?若不能,请说明理由;
(3)当为何值时,相似?

(1)证明见解析;(2)当时,以为顶点的四边形为平行四边形,理由见解析;(3)

解析试题分析:(1)根据旋转的性质可得PB=PC,∠PBC=90°,故△PBC是等腰直角三角形;
(2)以P、O、B、C为顶点的四边形为平等四边形:因为,所以OB∥PC,又点B是PA的中点,所以OB=BP=PC.故四边形POBC是平等四边形.此时有,即.即,从而可求t的值;
(3)由题意可知,, 分两种情况讨论:当时,,此时 ;当时,,此时;因此,当时,相似
试题解析:(1)△PBC是等腰直角三角形.
∵线段PB绕着点P顺时针方向旋转90°,得到线段PC
∴PB=PC,∠BPC=90°,
∴△PBC是等腰直角三角形.
(2)当OB⊥BP时,以P、O、B、C为顶点的四边形为平行四边形.
∵∠OBP=∠BPC=90°
∴OB∥PC,
∵B是PA的中点

∴四边形POBC是平行四边形
当OB⊥BP时,有

(不合题意)
∴当t=2时,以P、O、B、C为顶点的四边形为平行四边形.
(3)由题意可知,
时,,此时
 
时,,此时

∴当时,相似
考点: 1.等腰直角三角形的判定;2.平等四边形的判定;3.相似三角形的判定与性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC,△A1B1C1

(1)将△ABC,△A1B1C1如图②摆放,使点A1与B重合,点B1在AC边的延长线上,连接CC1交BB1于点E.
①求证:四边形C1B1AB为梯形.
②若∠A="45°," ∠ABC="30°," 求∠B1C1C的度数   
(2)若将△ABC,△A1B1C1如图③摆放,使点B1与B重合,点A1在AC边的延长线上,连接CC1交A1B于点F.试判断∠A1C1C与∠A1BC是否相等,并说明理由.
(3)在(2)的条件下,若AC=3,B1C1=6,设A1B=x,C1F=y,写出y与x的函数关系式(不要求写出自变量的取值范围)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,梯形中,,点上,连接并延长与的延长线交于点

(1)求证:△∽△
(2)当点的中点时,过点于点,若,求 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在梯形ABCD中,AB∥CD,∠DAB=90°,AC⊥BC.

(1)求证:△ADC∽△BCA;
(2)若AB=9cm,AC=6cm,求梯形ABCD中位线的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在直角梯形OABC中,OA∥BC,A、B两点的坐标分别为A(13,0),B(11,12),动点P,Q分别从O、B两点同时出发,点P以每秒2个单位的速度沿OA向终点A运动,点Q以每秒1个单位的速度沿BC向C运动,当点P停止运动时,点Q同时停止运动.线段OB、PQ相交于点D,过点D作DE∥OA,交AB于点E,设动点P、Q运动时间为t(单位:s)

(1)当t为何值时,四边形PABQ是平行四边形,请写出推理过程;
(2)通过推理论证:在P、Q的运动过程中,线段DE的长度不变;

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

网格中每个小正方形的边长都是1.
(1)将图1中画一个格点三角形DEF,使得△DEF≌△ABC

(2)将图2中画一个格点三角形MNL,使得△MNL∽△ABC,且相似比为2:1

(3)将图3中画一个格点三角形OPQ,使得△OPQ∽△ABC,且相似比为:1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=0.4m,EF=0.2cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连结并延长交的延长线于点

(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平行四边形中,为边延长线上的一点,且的黄金分割点,即于点,已知,求的长.

查看答案和解析>>

同步练习册答案