精英家教网 > 初中数学 > 题目详情
精英家教网如图,在⊙O中,弦CD垂直于直径AB.M是OC的中点,AM的延长线交⊙O于E,DE交BC于N.求证:BN=CN.
分析:连接AC和BD,根据垂径定理得BC=BD,再由已知条件可以证得△BCD∽△OCA,则
CB
CO
=
CD
CA
,还可以证明△CDN∽△CAM.有相似三角形的性质,证出BN=CN.
解答:精英家教网证明:连接AC和BD.
∵弦CD垂直于直径AB,
∴BC=BD.(5分)
∴∠BCD=∠BDC.
∵OA=OC,
∴∠OCA=∠OAC.
∵∠BDC=∠OAC,
∴∠BCD=∠OCA.
∴△BCD∽△OCA.
CB
CO
=
CD
CA
(15分)
在△CDN和△CAM中,
∵∠DCN=∠ACM,∠CDN=∠CAM,
∴△CDN∽△CAM.(20分)
CN
CM
=
CD
CA
=
CB
CO
=
CB
2CM

∴CN=
1
2
CB,即BN=CN.(25分)
点评:本题考查了相似三角形的判定和性质、垂径定理,解答这类题一些学生不会综合运用所学知识解答问题,不知从何处入手造成错解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在⊙O中,弦AD=BC.求证:AB=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,在⊙O中,弦BC∥半径OA,AC与OB相交于M,∠C=20°,则∠AMB的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙M中,弦AB所对的圆心角为120度,已知圆的半径为2cm,并建立如图所示的直角坐精英家教网标系.
(1)求圆心M的坐标;
(2)求经过A,B,C三点的抛物线的解析式;
(3)设点P是⊙M上的一个动点,当△PAB为Rt△PAB时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中,弦AB=BC=CD,且∠ABC=140°,则∠AED=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中,弦AB与CD相交于点P,连接AC、DB.
(1)求证:△PAC∽△PDB;
(2)当
AC
DB
为何值时,
S△PAC
S△PDB
=4?

查看答案和解析>>

同步练习册答案