精英家教网 > 初中数学 > 题目详情

【题目】如图,在等边ABC中,DBC边上一点,EAC边上一点,且 ADE=60°,BD=4,CE=,则ABC的面积 为(  )

A. B. 15 C. D.

【答案】C

【解析】

首先由ABC是等边三角形,可得∠B=C=ADE=60°,又由三角形外角的性质,求得∠ADB=DEC,即可得ABD∽△DCE,又由BD=4,CE=,根据相似三角形的对应边成比例,即可求得AB的长,则可求得ABC的面积.

∵△ABC是等边三角形,∠ADE=60°

∴∠B=C=ADE=60°,AB=BC,

∵∠ADB=DAC+C,DEC=ADE+DAC,

∴∠ADB=DEC,

∴△ABD∽△DCE,

,

BD=4,CE=

AB=x,则DC=x-4,

,

x=6,

AB=6,

过点AAFBCF,

RtABF中,AF=ABsin60°=6×=3

SABC=BCAF=×6×3=9

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于点G,BG=4,则△EFC的周长为( )

A. 11 B. 10 C. 9 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C90°BC16 cmAC12 cm,点P从点B出发,沿BC2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点PQ分别从点BC同时出发,设运动时间为ts,当t__________时,CPQCBA相似.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,动点P从点A开始沿边ABB的速度移动(不与点B重合),动点Q从点B开始沿边BCC的速度移动(不与点C重合),如果PQ分别从AB同时出发,设运动的时间为,四边形APQC的面积为

1)求yx之间的函数关系式;写出自变量x的取值范围;

2)当四边形APQC的面积等于时,求x的值;

3)四边形APQC的面积能否等于?若能,求出运动的时间,若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣13.乙袋中的三张卡片所标的数值为﹣216.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把xy分别作为点A的横坐标和纵坐标.

1)用适当的方法写出点Axy)的所有情况.

2)求点A落在第三象限的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OACBAD都是等腰直角三角形,∠ACO=ADB=90°,反比例函数y=在第一象限的图象经过点B,则OACBAD的面积之差SOACSBAD为(  )

A. 36 B. 12 C. 6 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形.

(1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;

(2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,抛物线y=a(x2+2x-3)(a≠0)x轴交于点A和点B,与y轴交于点C,且OC=OB.

(1)直接写出点B的坐标是( ),并求抛物线的解析式;

(2)设点D是抛物线的顶点,抛物线的对称轴是直线l,连接BD,线段OC上的点E关于直线l的对称点E'恰好在线段BD上,求点E的坐标;

(3)若点F为抛物线第二象限图象上的一个动点,连接BFCF,当△BCF的面积是△ABC面积的一半时,求此时点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图所示的一张矩形纸片ABCDADAB),将纸片折叠一次,使点AC重合,再展开,折痕EFAD边于E,交BC边于F,分别连结AFCE

1)求证:四边形AFCE是菱形;

2)若AE13cm,△ABF的周长为30cm,求△ABF的面积;

3)在线段AC上是否存在一点P,使得2AE2ACAP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案