精英家教网 > 初中数学 > 题目详情
如图,已知抛物线与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,3).

(1)求抛物线的解析式;
(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标.
解:(1)∵抛物线与y轴交于点C(0,3),
∴设抛物线解析式为y=ax2+bx+3(a≠0),
根据题意,得,解得
∴抛物线的解析式为y=﹣x2+2x+3。
(2)存在。
由y=﹣x2+2x+3得,D点坐标为(1,4),对称轴为x=1。
①若以CD为底边,则PD=PC,
设P点坐标为(x,y),根据勾股定理,得,即y=4﹣x。
又P点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0。
解得<1,舍去。
,∴
∴点P坐标为
②若以CD为一腰,
∵点P在对称轴右侧的抛物线上,由抛物线对称性知,点P与点C关于直线x=1对称,
∴点P坐标为(2,3)。
综上所述,符合条件的点P坐标为或(2,3)。
(3)由B(3,0),C(0,3),D(1,4),根据勾股定理,得CB=,CD=,BD=
∴CB2+CD2=BD2=20。∴∠BCD=90°。
设对称轴交x轴于点E,过C作CM⊥DE,交抛物线于点M,垂足为F,

在Rt△DCF中,∵CF=DF=1,∴∠CDF=45°。,
由抛物线对称性可知,∠CDM=2×45°=90°,点坐标M为(2,3)。
∴DM∥BC。∴四边形BCDM为直角梯形。
由∠BCD=90°及题意可知,
以BC为一底时,顶点M在抛物线上的直角梯形只有上述一种情况;
以CD为一底或以BD为一底,且顶点M在抛物线上的直角梯形均不存在。
综上所述,符合条件的点M的坐标为(2,3)。

试题分析:(1)由于A(﹣1,0)、B(3,0)、C(0,3)三点均在坐标轴上,故用待定系数法求解即可。
(2)分以CD为底和以CD为腰两种情况讨论.运用两点间距离公式建立起P点横坐标和纵坐标之间的关系,再结合抛物线解析式即可求解。
(3)根据抛物线上点的坐标特点,利用勾股定理求出相关边长,再利用勾股定理的逆定理判断出直角梯形中的直角。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(2013年四川资阳12分)如图,四边形ABCD是平行四边形,过点A、C、D作抛物线y=ax2+bx+c(a≠0),与x轴的另一交点为E,连结CE,点A、B、D的坐标分别为(﹣2,0)、(3,0)、(0,4).

(1)求抛物线的解析式;
(2)已知抛物线的对称轴l交x轴于点F,交线段CD于点K,点M、N分别是直线l和x轴上的动点,连结MN,当线段MN恰好被BC垂直平分时,求点N的坐标;
(3)在满足(2)的条件下,过点M作一条直线,使之将四边形AECD的面积分为3:4的两部分,求出该直线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2013年四川泸州12分)如图,在直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(1,),已知抛物线y=ax2+bx+c(a≠0)经过三点A、B、O(O为原点).

(1)求抛物线的解析式;
(2)在该抛物线的对称轴上,是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(3)如果点P是该抛物线上x轴上方的一个动点,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线的顶点为(0,4)且与x轴交于(﹣2,0),(2,0).

(1)直接写出抛物线解析式;
(2)如图,将抛物线向右平移k个单位,设平移后抛物线的顶点为D,与x轴的交点为A、B,与原抛物线的交点为P.
①当直线OD与以AB为直径的圆相切于E时,求此时k的值;
②是否存在这样的k值,使得点O、P、D三点恰好在同一条直线上?若存在,求出k值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

把抛物线先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在同一坐标系内,一次函数与二次函数的图象可能是
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数,当自变量x取m对应的函数值大于0,设自变量分别取m-3,m+3 时对应的函数值为y1,y2,则
A.y1>0,y2>0B.y1>0,y2<0 C.y1<0,y2>0D.y1<0,y2<0

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数的图象如图所示,有下列5个结论:
①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m≠1的实数)。
其中正确结论的序号有     

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx+c(a≠0)的图象如图如图所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.则M,N,P中,值小于0的数有
A.3个B.2个C.1个D.0个

查看答案和解析>>

同步练习册答案