精英家教网 > 初中数学 > 题目详情

【题目】菱形ABCD中,∠B=60°,∠MAN=60°,射线AM交直线BC于点E,射线AN交直线CD于点F,连结EF,请解答下列问题:
(1)如图1,求证:EC+FC=AC;

(2)将∠MAN绕点A旋转,如图2,如图3,请直接写出线段EC,FC,AC之间的数量关系,不需要证明;

(3)若S菱形ABCD=18 ,∠CAE=30°,则CF=

【答案】
(1)

解:如图1所示:

∵四边形ABCD为菱形,∠B=60°

∴AB=BC,∠ACF=∠B=60°.

又∵∠B=60°,

∴△ABC为等边三角形.

∴AC=BC=AB,∠BAC=60°.

又∵∠MAN=60°,

∴∠BAE=∠CAF.

在△ABE和△ACF中

∴△ABE≌△ACF(ASA).

∴BE=CF.

∴EC+CF=EC+BE=BC.

又∵BC=AC,

∴EC+CF=AC


(2)

解:如图2所示:AC+CF=EC.

∵四边形ABCD为菱形,∠B=60°

∴AB=BC,∠ACD=∠B=60°.

∴∠ACF=120°.

∵∠B=60°,AB=BC,

∴△ABC为等边三角形.

∴AC=BC=AB,∠ABC=60°.

∴∠ABE=120°.

∴∠ABE=∠ACF.

∵∠MAN=∠BAC=60°

∴∠BAE=∠CAF.

在△ABE和△ACF中

∴△ABE≌△ACF(ASA).

∴BE=CF.

∴FC+BC=BE+BC=CE.

∵BC=AC,

∴FC+AC=CE.

如图3所示:

又∵BC=AC,

∴EC+CF=AC.

如图3所示:CF=AC+CE.

在△ACE和△ADF中

△ACE≌△ADF(ASA).

∴CE=DF.

∴CF=CD+DF=CD+CE=AC+CE,即CF=AC+CE


(3)3或12
【解析】解:(3)如图1所示:
∵∠CAE=30°,∠CAB=60°,
∴AE平分∠CAB.
又∵AB=AC,
∴AE⊥BC,BE=CE.
∴AE= AB.
∵S菱形ABCD=18
∴AB AB=18
∴AB=6.
∴BE=EC=3.
∴CF=3.
如图3所示:
∵∠CAE=30°,∠BAC=60°,
∴∠BAE=90°.
又∵AB=6,∠B=60°,
∴BE=12.
∴CF=AC+CE=BC+CE=12.
综上所述,CF=3或CF=12.
所以答案是:3或12.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,已知点P0的坐标为(),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OPn(n为正整数),则点P2017的坐标为( )

A. () B. (0,22018) C. () D. (22018,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为厘米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在长方形中,cm,cm.现将其按下列步骤折叠:(1)将边向边折叠,使边落在边上,得到折痕,如图②;(2)沿折叠,交于点,如图③.则所得梯形的周长等于( )

A. cm B. cm

C. cm D. cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm,水面宽AB为8cm,则水的最大深度CD为(
A.4cm
B.3cm
C.2cm
D.1cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,AB为直径,C为⊙O上一点,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为 , 则图中阴影部分的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ACB中,ACB=90゜,CDAB于D.

(1)求证:ACD=B;

(2)若AF平分CAB分别交CD、BC于E、F,求证:CEF=CFE.

查看答案和解析>>

同步练习册答案