精英家教网 > 初中数学 > 题目详情

【题目】为了保证端午节龙舟赛在我市侨港海域顺利举办,某部门工作人员乘快艇到侨港海域考察水情,以每秒11米的速度沿平行于岸边的赛道AB由西向东行驶,在A处测得岸边一建筑物P在北偏东30°方向上,继续行驶40秒到达B处时,测得建筑物P在北偏西60°方向上,如图所示,求建筑物P到赛道AB的距离(结果保留根号).

【答案】建筑物P到赛道AB的距离为110米.

【解析】

PCABC,构造出RtPACRtPBC,求出AB的长度,利用特殊角的三角函数值求解.

P点作PCABC,由题意可知:PAC60°PBC30°

Rt△PAC中,tan∠PAC

ACPC

Rt△PBC中,tan∠PBC

BCPC

ABAC+BCPC+PC11×40

PC110

答:建筑物P到赛道AB的距离为110米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE,折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若DE=5,则GE的为_______________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点M的坐标是(54),⊙My轴相切于点C,与x轴相交于AB两点.

1)则点ABC的坐标分别是A____),B____),C____);

2)设经过AB两点的抛物线解析式为,它的顶点为F,求证:直线FA与⊙M相切;

3)在抛物线的对称轴上,是否存在点P,且点Px轴的上方,使PBC是等腰三角形.如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数yx+m的图象与反比例函数y的图象交于AB两点,且与x轴交于点C,点A的坐标为(21).

1)求一次函数和反比例函数的解析式;

2)求点C的坐标;

3)结合图象直接写出不等式0x+m的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小东根据学习函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完整,并解决相关问题:

(1)函数的自变量x的取值范围是

(2)下表是yx的几组对应值.

x

0

1

2

3

4

y

2

4

2

m

表中m的值为________________;

(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点. 根据描出的点,画出函数的大致图象;

(4)结合函数图象,请写出函数的一条性质:______________________.

(5)解决问题:如果函数与直线y=a的交点有2个,那么a的取值范围是______________ .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数yax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点A(30),下列说法:①abc0;②2ab0;③4a+2b+c0;④若(2y1)(y2)是抛物线上两点,则y1y2,其中说法正确的是( )

A.①②B.②③C.①②④D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+4x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.

(1)求抛物线的解析式;

(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标;

(3)在(2)的结论下,过点Ey轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,矩形OABC的两个顶点AC分别在x轴,y轴上,点B的坐标是(82),点P是边BC上的一个动点,连接AP,以AP为一边朝点B方向作正方形PADE,连接OP并延长与DE交于点M,设CPaa0).

1)请用含a的代数式表示点PE的坐标.

2)连接OE,并把OE绕点E逆时针方向旋转90°得EF.如图2,若点F恰好落在x轴的正半轴上,求a的值.

3)①如图1,当点MDE的中点时,求a的值.

②在①的前提下,并且当a4时,OP的延长线上存在点Q,使得EQ+PQ有最小值,请直接写出EQ+PQ的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知矩形的一条边,将矩形折叠,使得顶点落在边上的点处. 如图,已知折痕与边交于点,连结.

1)求证:

2)若,求边的长.

查看答案和解析>>

同步练习册答案