【题目】已知:如图,抛物线与x轴交于A、B两点,与y轴交于C点,且、,点D是第四象限的抛物线上的一个动点,过点D作直线轴,垂足为点F,交线段BC于点E
求抛物线的解析式及点A的坐标;
当时,求点D的坐标;
在y轴上是否存在P点,使得是以AC为腰的等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.
【答案】(1)y,点A的坐标为;(2)点D的坐标为;(3)点P的坐标为,或.
【解析】
由点B,C的坐标,利用待定系数法即可求出抛物线的解析式,再利用二次函数图象上点的坐标特征可求出点A的坐标;
由点B,C的坐标,利用待定系数法即可求出线段BC所在直线的解析式,设点D的坐标为,则点E的坐标为,点F的坐标为,进而可得出DE,EF的长,结合即可得出关于x的一元二次方程,解之取其较小值即可得出结论;
由点A,C的坐标,利用勾股定理可求出AC的长度,分及两种情况考虑:当时,由AC的长度可得出CP的长度,结合点C的坐标即可得出点,的坐标;当时,由等腰三角形的性质可得出,结合点C的坐标即可得出点的坐标综上,此题得解.
解:将,代入,得:
,解得:,
抛物线的解析式为.
当时,,
解得:,,
点A的坐标为.
设线段BC所在直线的解析式为,
将,代入,得:
,解得:,
线段BC所在直线的解析式为.
设点D的坐标为,则点E的坐标为,点F的坐标为,
,.
,
,
整理,得:,
解得:,舍去,
当时,点D的坐标为.
点A的坐标为,点C的坐标为,
,,
.
是以AC为腰的等腰三角形,
或.
当时,,
又点C的坐标为,
点的坐标为,点的坐标为;
当时,,
点的坐标为.
综上所述:在y轴上存在P点,使得是以AC为腰的等腰三角形,点P的坐标为,或.
科目:初中数学 来源: 题型:
【题目】某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).
①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;
②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.
根据以上测量过程及测量数据,请你求出河宽BD是多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(操作体验)
如图①,已知线段AB和直线l,用直尺和圆规在l上作出所有的点P,使得∠APB=30°,如图②,小明的作图方法如下:
第一步:分别以点A,B为圆心,AB长为半径作弧,两弧在AB上方交于点O;
第二步:连接OA,OB;
第三步:以O为圆心,OA长为半径作⊙O,交l于P1,P2;所以图中P1,P2即为所求的点.
(1)在图②中,连接P1A,P1B,试说明∠AP1B=30°;
(方法迁移)
(2)已知矩形ABCD,如图③,BC=2,AB=m.
①若P为AD边上的点,且满足∠BPC=60°的点P恰有1个,求m的值.
②当m=4时,若P为矩形ABCD外一点,且满足∠BPC=60°,求AP长的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 正方形ABCD与正五边形EFGHM的边长相等,初始如图所示,将正方形绕点F顺时针旋转使得BC与FG重合,再将正方形绕点G顺时针旋转使得CD与GH重合…按这样的方式将正方形依次绕点H、M、E旋转后,正方形中与EF重合的是( )
A. ABB. BCC. CDD. DA
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 梯形ABCD中,AD∥BC,请用尺规作图并解决问题.
(1)作AB中点E,连接DE并延长交射线CB于点F,在DF的下方作∠FDG=∠ADE,边DG交BC于点G,连接EG;
(2)试判断EG与DF的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.
(1)请用列表法或树状图写出所有的等可能性结果,写出所有个位数字是6的“两位递增数”;
(2)求抽取的“两位递增数”的个位数字与十位数字之积能被5整除的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为( )
A. 6B. 8
C. 10D. 12
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com